+7 (499) 928-69-47  Москва

+7 (812) 467-45-73  Санкт-Петербург

8 (800) 511-49-68  Остальные регионы

Звонок бесплатный!

Значение сцепленного наследования генов 2019 год

В 1911 – 1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя, проводя опыты на мухах дрозофилах. Они учитывали две пары альтернативных признаков: серый и чёрный цвет тела и нормальные и короткие крылья. При скрещивании гомозиготных особей с такими признаками получили единообразие гибридов первого поколения – мух с серым телом и нормальными крыльями. Следовательно, эти признаки были доминантными. Подтвердился первый закон Менделя.

Далее Морган решил провести анализирующее скрещивание гибридов первого поколения. Он взял рецессивную гомозиготную самку и скрестил её с дигетерозиготным самцом.

При свободном комбинировании генов, согласно третьему закону Менделя, в поколении должны были бы появиться в равном количестве (по 25 %) мухи четырёх разных фенотипов, а получили два фенотипа по 50 %. Морган пришёл к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, каждая хромосома содержит большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе, т. е. сцепленно. Цитологические основы этого явления можно пояснить следующей схемой:

Схема расхождения хромосом в мейозе при полном сцеплении.

Одна из пары гомологичных хромосом содержит два доминантных гена (А – серое тело, В – нормальные крылья), а другая – два рецессивных (а – чёрное тело, d – короткие крылья). В процессе мейоза одна хромосома со своими генами АВ попадёт в одну гамету, а другая с генами аb – в другую. Таким образом, у дигетерозиготного организма образуется не четыре типа гамет (когда гены расположены в разных хромосомах), а только два и, следовательно, будет получено поколение только с двумя сочетаниями признаков (как у родителей).

Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи дрозофилы всего 8 хромосом – 4 группы сцепления, у человека 46 хромосом – 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления.

Если гены, локализованные в одной хромосоме, передаются вместе, то такое сцепление называется полным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку дрозофилы скрестить с рецессивным самцом, результат будет следующий:

F1 АаВb Aabb aaBb aabb

41,5 % 8,5 % 8,5 % 41,5 %

Таким образом, получается 4 типа потомков: 41,5 % особей с серым телом и длинными крыльями, 41,5 % с чёрным телом и короткими крыльями и по 8,5 % мух с серым телом и короткими крыльями и с чёрным телом и длинными крыльями. В этом случае сцепление неполное, т. е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера.

Кроссинговер (от англ. crossingover – перекрёст) – это процесс обмена гомологичными участками гомологичных хромосом (хроматид).

Обычно кроссинговер происходит в мейозе I.

При кроссинговере происходит обмен генетическим материалом (аллелями) между хромосомами, и тогда происходит рекомбинация – появление новых сочетаний аллелей, например, AB + ab Ab + aB.

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с хроматидами АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В, тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке ab. Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные хроматиды Ab и аВ. В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными, с их участием разовьются кроссоверные гаметы, зиготы и особи. Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах.

Это интересно:  Наследование квартиры несовершеннолетними детьми 2019 год

Величина кроссинговера, отражающая силу сцепления между генами, измеряется отношением числа рекомбинантов к общему числу особей в потомстве от анализирующего скрещивания и выражается в процентах.

Схема кроссинговера между двумя гомологичными хромосомами.

Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. В результате анализирующего скрещивания получаются всевозможные комбинации генов разных аллельных пар, причём количество потомков с различными сочетаниями признаков будет равным. Неполное сцепление наблюдается тогда, когда исследуемые гены локализованы в одной хромосоме, а в результате кроссинговера возможна их перекомбинация. При анализирующем скрещивании также получаются всевозможные комбинации генов, но количество потомков с разными сочетаниями признаков будет неравным. Полное сцепление наблюдается в том случае, когда анализируемые гены локализованы в одной хромосоме и кроссинговер не происходит. В этом случае при анализирующем скрещивании у потомков наблюдается такое же сочетание признаков, какое было у родителей.

Генетические (кроссоверные) карты

Алфред Стёртевант (сотрудник Моргана) предположил, что частота кроссинговера на участке между генами, локализованными в одной хромосоме, может служить мерой расстояния между генами. Иными словами, частота кроссинговера, выражаемая отношением числа кроссоверных особей к общему числу особей, прямо пропорциональна расстоянию между генами. Тогда можно использовать частоту кроссинговера для того, чтобы определять взаимное расположение генов и расстояние между генами. Единицей расстояния между генами служит 1 % кроссинговера; в честь Моргана эта единица называется морганидой (М).

На основании генетического картирования составляются генетические карты – схемы, отражающие положение генов в хромосомах относительно других генов. На генетических картах крайнему гену (т. е. наиболее удаленному от центромеры) соответствует нулевая (исходная) точка. Удаленность какого-либо гена от нулевой точки обозначается в морганидах.

Построение генетических карт различных организмов имеет большое значение в здравоохранении, селекции и экологии. При изучении признаков человека (и в частности, генетических заболеваний) важно знать, какой именно ген определяет рассматриваемый признак. Эти знания позволяют составлять прогнозы при медико-генетическом консультировании, при разработке методов лечения генетических заболевания, в т. ч. и для коррекции генома. Знание генетических карт культурных растений и домашних животных позволяет планировать селекционный процесс, что способствует получению надёжных результатов в краткие сроки. Построение генетических карт дикорастущих растений и диких животных важно и с точки зрения экологии. В частности, исследователь получает возможность изучать не просто фенотипические признаки организмов, а конкретные, генетически обусловленные признаки.

Двойной и множественный кроссинговер

Морган предположил, что кроссинговер между двумя генами может происходить не только в одной, но и в двух и даже большем числе точек. Чётное число перекрёстов между двумя генами, в конечном счёте, не приводит к их перемещению из одной гомологичной хромосомы в другую, поэтому число кроссинговеров и, следовательно, расстояние между этими генами, определенное в эксперименте, снижаются. Обычно это относится к достаточно далеко расположенным друг от друга генам. Естественно, что вероятность двойного перекрёста всегда меньше вероятности одинарного. В принципе она будет равна произведению вероятности двух единичных актов рекомбинации. Например, если одиночный перекрёст будет происходить с частотой 0,2, то двойной – с частотой 0,2 × 0,2 = 0,04. В дальнейшем, наряду с двойным кроссинговером, было открыто и явление множественного кроссинговера: гомологичные хроматиды могут обмениваться участками в трех, четырех и более точках.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых представляет собой как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации т. е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Эволюционное значение сцепленного наследования.

В результате сцепления одна хромосома может содержать как благоприятные аллели (например, А), так и нейтральные или относительно неблагоприятные (например, N). Если некоторый гаплотип (например, AN) повышает приспособленность его носителей за счет наличия благоприятных аллелей A, то в популяции будут накапливаться как благоприятные аллели, так и сцепленные с ними нейтральные или относительно неблагоприятные N.

Это интересно:  Покупка квартиры после наследования 2019 год

Пример. Гаплотип AN обладает преимуществом перед гаплотипом “дикого типа» (++) за счет наличия благоприятного аллеля А, и тогда аллель N будет накапливаться в популяции, если он селективно нейтральный или даже относительно неблагоприятный (но его отрицательное влияние на приспособленность компенсируется положительным влиянием аллеля А).

Эволюционное значение кроссинговера.

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Пример. Гаплотип Al оказывается неблагоприятным по сравнению с гаплотипом «дикого типа» (++) за счет наличия летального аллеля l. Поэтому аллель А (благоприятный, нейтральный ил несколько снижающий приспособленность) не может проявиться в фенотипе, поскольку данный гаплотип (Al) содержит летальный аллель l. В результате кроссинговера возникают рекомбинантные гаплотипы A+ и +l. Гаплотип +l элиминируется из популяции, а гаплотип A+ фиксируется (даже в том случае, если аллель А несколько снижает приспособленность его носителей).

Вопросы для контроля:

1. Как по результатам анализирующего скрещивания определить свободное комбинирование генов, неполное и полное сцепление?

2. Форма локализации неаллельных генов, при которой осуществляется закон сцепления Моргана. В результате какого процесса нарушается сцепление генов?

3. Скрещены две линии мышей: в одной из них животные имеют извитую шерсть нормальной длины, а в другой – длинную прямую. Гибриды F1 имеют шерсть нормальную прямую. В анализирующем скрещивании получилось следующее расщепление: мышат с нормальной прямой шерстью – 27, с нормальной извитой – 99, длинной прямой – 98 и длинной извитой – 24. Как наследуются эти две пары признаков?

39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.

Основные положения хромосомной теории наследственности

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

Гены расположены в хромосоме в линейной последовательности.

Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин — 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Это интересно:  Наследование пенсионных накоплений 2019 год

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Кроссинговер.Этот процесс происходит в профазе Iмейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом (рис. 3.72).Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.

Рис. 3.72.Кроссинговер как источник генетического разнообразия гамет:

I — оплодотворение родительских гамета и б с образованием зиготыв; II гаметогенез в организме, развившемся из зиготыв;г — кроссинговер, происходящий между гомологами в профазеI; д клетки, образовавшиеся после 1-го мейотического деления;е, ж клетки, образовавшиеся после 2-го деления мейоза (е некроссоверные гаметы с исходными родительскими хромосомами;ж кроссоверные гаметы с перекомбинацией наследственного материала в гомологичных хромосомах)

Понятно, что кроссинговер как механизм рекомбинации эффективен лишь в том случае, когда соответствующие гены отцовской и материнской хромосом представлены разными аллелями. Абсолютно идентичные группы сцепления при кроссинговере не дают новых сочетаний аллелей.

Рис. 3.73.Кроссинговер в соматических клетках:

1 — соматическая клетка, в гомологичных хромосомах которой ген А представлен двумя разными аллелями (А и а);2 — кроссинговер; 3 — результат обмена соответствующими участками между гомологичяыми хромосомами; 4 — расположение гомологов в плоскости экватора веретена деления в метафазе митоза (два варианта); 5 — образование дочерних клеток; 6 — образование гетерозитотиых по гену А клеток, сходных с материнской клеткой по набору аллелей (Аа); 7 — образование гомозиготных по гену А клеток, отличающихся от материнской клетки по набору аллелей (АА или аа)

Статья написана по материалам сайтов: studfiles.net.

»

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector