+7 (499) 322-30-47  Москва

+7 (812) 385-59-71  Санкт-Петербург

8 (800) 222-34-18  Остальные регионы

Звонок бесплатный!

Закон сцепленного наследования открыл 2019 год

Сцепление генов — расположение генов в одной хромосоме.

Сцепленное наследование генов — совместное наследование генов, локализованных в одной хромосоме.

Закон Моргана

Вид эксперимента: дигибридное скрещивание.

Исходные условия: G — серое тело, g — темное тело, L — нормальные крылья, / — редуцированные крылья.

Закон был открыт на основании анализа результатов двух последовательных экспериментов.

Участники скрещивания: гомозиготные мухи-дрозофилы с серым телом и нормальными крыльями (GGLL) и с темным телом и редуцированными крыльями (ggll).

F GgLl (фенотип: серое тело, нормальные крылья)

Рис. 6.11. Цитологическая основа результатов I эксперимента

Цитологическая основа результатов эксперимента показана на рис. 6.11.

Эксперимент II (дигибридное анализирующее скрещивание).

Р: GgLI (исследуемый организм) Xggll (эталонный организм)

Г: GL Gl gL gl gl

F. GgLI, ggll (в соотношении 1:1).

Отсутствие в потомстве особей Ggll и ggLI указывает на отсутствие гамет типа GI и gL. Причина: гены G и L (так же как и гены g и /) располагаются в одной хромосоме (сцеплены).

Цитологическая основа результатов эксперимента показана на рис. 6.12.

Формулировка закона: гены, расположенные в одной хромосоме, наследуются вместе и составляют группу сцепления.

Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов

Новый организм получает от родителей не россыпь генов, а целые хромосомы, при этом количество признаков и соответственно определяющих их генов гораздо больше, чем хромосом. В соответствии с хромосомной теорией наследственности, гены, расположенные в одной хромосоме, наследуются сцепленно. Вследствие этого при дигибридном скрещивании они не дают ожидаемого расщепления 9:3:3:1 и не подчиняются третьему закону Менделя. Можно было бы ожидать, что сцепление генов является полным, и при скрещивании гомозиготных по данным генам особей и во втором поколении дает исходные фенотипы в соотношении 3:1, а при анализирующем скрещивании гибридов первого поколения расщепление должно составлять 1:1.

Для проверки этого предположения американский генетик Т. Морган выбрал у дрозофилы пару генов, контролирующих окраску тела (серое — черное) и форму крыла (длинные — зачаточные), которые расположены в одной паре гомологичных хромосом. Серое тело и длинные крылья являются доминантными признаками. При скрещивании гомозиготной мухи с серым телом и длинными крыльями и гомозиготной мухи с черным телом и зачаточными крыльями во втором поколении действительно были получены в основном родительские фенотипы в соотношении, близком к 3:1, однако имелось и незначительное количество особей с новыми комбинациями этих признаков. Данные особи называются рекомбинантными.

Однако, проведя анализирующее скрещивание гибридов первого поколения с гомозиготами по рецессивным генам, Т. Морган обнаружил, что 41,5 % особей имели серое тело и длинные крылья, 41,5 % — черное тело и зачаточные крылья, 8,5 % — серое тело и зачаточные крылья, и 8,5 % — черное тело и зачаточные крылья. Он связал полученное расщепление с кроссинговером, происходящим в профазе I мейоза и предложил считать единицей расстояния между генами в хромосоме 1 % кроссинговера, впоследствии названный в его честь морганидой.

Закономерности сцепленного наследования, установленные в ходе экспериментов на дрозофиле, получили название закона Т. Моргана.

Закон Моргана:

Гены, локализованные в одной хромосоме, занимают определенное место, называемое локусом, и наследуются сцепленно, причем сила сцепления обратно пропорциональна расстоянию между генами.

Гены, расположенные в хромосоме непосредственно друг за другом (вероятность кроссинговера крайне мала), называются сцепленными полностью, а если между ними находится еще хотя бы один ген, то они сцеплены не полностью и их сцепление нарушается при кроссинговере в результате обмена участками гомологичных хромосом.

Явления сцепления генов и кроссинговера позволяют построить карты хромосом с нанесенным на них порядком расположения генов. Генетические карты хромосом созданы для многих генетически хорошо изученных объектов: дрозофилы, мыши, человека, кукурузы, пшеницы, гороха и др. Изучение генетических карт позволяет сравнивать строение генома у различных видов организмов, что имеет важное значение для генетики и селекции, а также эволюционных исследований.

Генетика пола

Пол — это совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится к оплодотворению, то есть слиянию мужских и женских половых клеток в зиготу, из которой развивается новый организм.

Признаки, по которым один пол отличается от другого, делят на первичные и вторичные. К первичным половым признакам относятся половые органы, а все остальные — ко вторичным.

У человека вторичными половыми признаками являются тип телосложения, тембр голоса, преобладание мышечной или жировой ткани, наличие оволосения на лице, кадыка, молочных желез. Так, у женщин таз обычно шире плеч, преобладает жировая ткань, выражены молочные железы, голос — высокий. Мужчины же отличаются от них более широкими плечами, преобладанием мышечной ткани, наличием оволосения на лице и кадыка, а также низким голосом. Человечество издавна интересовал вопрос, почему особи мужского и женского пола рождаются в соотношении приблизительно 1:1. Объяснение этому было получено при изучении кариотипов насекомых. Оказалось, что у самок некоторых клопов, кузнечиков и бабочек на одну хромосому больше, чем у самцов. В свою очередь самцы продуцируют гаметы, различающиеся по количеству хромосом, тем самым заранее определяя пол потомка. Однако впоследствии было выяснено, что у большинства организмов количество хромосом у самцов и самок все же не различается, но у одного из полов есть пара хромосом, которые не подходят друг другу по размерам, а у другого все хромосомы парные.

В кариотипе человека также обнаружили подобное различие: у мужчин есть две непарные хромосомы. По форме эти хромосомы в начале деления напоминают латинские буквы Х и Y, и поэтому были названы Х- и Y-хромосомами. Сперматозоиды мужчины могут нести одну из этих хромосом и определять пол будущего ребенка. В связи с этим хромосомы человека и многих других организмов делят на две группы: аутосомы и гетерохромосомы, или половые хромосомы.

К аутосомам относят хромосомы, одинаковые для обоих полов, тогда как половые хромосомы — это хромосомы, отличающиеся у разных полов и несущие информацию о половых признаках. В тех случаях, когда пол несет одинаковые половые хромосомы, например ХХ, говорят, что он гомозиготен, или гомогаметен (образует одинаковые гаметы). Другой же пол, имеющий разные половые хромосомы (XY), называется гемизиготным (не имеющим полного эквивалента аллельных генов), или гетерогаметным. У человека, большинства млекопитающих, мушки дрозофилы и других организмов гомогаметен женский пол (ХХ), а мужской — гетерогаметен (XY), тогда как у птиц гомогаметен мужской пол (ZZ, или XX), а женский — гетерогаметен (ZW, или XY).

Х-хромосома является крупной неравноплечей хромосомой, которая несет свыше 1500 генов, причем многие мутантные их аллели вызывают у человека развитие тяжелых наследственных заболеваний, таких как гемофилия и дальтонизм. Y-хромосома, напротив, очень маленькая, в ней содержится всего около десятка генов, в том числе специфические гены, ответственные за развитие по мужскому типу.

Кариотип мужчины записывается как ♂ 46, XY, а кариотип женщины — как ♀ 46, ХХ.

Поскольку гаметы с половыми хромосомами продуцируются у самцов с равной вероятностью, то ожидаемое соотношение полов в потомстве составляет 1:1, что и совпадает с фактически наблюдаемым.

Это интересно:  Документы необходимые для права наследования 2019 год

Пчелы отличаются от других организмов тем, что самки у них развиваются из оплодотворенных яиц, а самцы — из неоплодотворенных. Соотношение полов у них отличается от указанного выше, так как процесс оплодотворения регулирует матка, в половых путях которой с весны запасаются сперматозоиды на весь год.

У ряда организмов пол может определяться иным способом: до оплодотворения или после него, в зависимости от условий внешней среды.

Справочник Эколога

Здоровье твоей планеты в твоих руках!

Закон томаса моргана

Закон Томаса Моргана также известен как закон сцепленного наследования. Согласно закону Моргана находящиеся в одной хромосоме гены образуют группу сцепления и часто наследуются совместно.

При этом сила сцепления зависит от расстояния между генами в хромосоме.

Закон Моргана противоречит третьему закону Менделя, согласно которому гены наследуются независимо друг от друга.

Дело в том, что каждый из данных законов имеет разное место применения. В одном случае – для генов, содержащихся в одной хромосоме. Во другом – для генов, находящихся в разных хромосома.

Сцепленное наследование возможно только для генов, локализованных в одной хромосоме. Однако оно может нарушаться в результате такого процесса как кроссинговер. Кроссинговер — это обмен равноценными участками между гомологичными хромосомами.

Кроссинговер происходит во время профазы I мейоза. В эту фазу клеточного деления гомологичные хромосомы конъюгируют (сближаются и соединяются).

Если между гомологичными хромосомами произошел кроссинговер, то сцепление между генами нарушается, ранее сцепленные аллели разных генов оказываются в разных гомологичных хромосомах.

Образуются новые комбинации генов.

Пример. У мушки дрозофилы цвет тела определяется геном, имеющим аллели A (серое тело) и a (черное тело). Длина крыльев определяется другими аллельными генами: B (длинные), b (короткие). В большинстве случаев серые мухи имеют длинные крылья, а черные – короткие.

Это говорит о том, что гены A и B сцеплены между собой, т. е. локализованы в одной хромосоме. В свою очередь гены a и b также сцеплены.

При скрещивании генотипов AABB и aabb в первом поколении все мушки будут серые с длинными крыльями (AaBb). Данный результат ничего не говорит о том, сцеплены гены или нет. Он будет одинаков в любом случае. Если гены сцеплены, то в одно хромосоме будут гены A и B от одного родителя, в гомологичной хромосоме – a и b (эта хромосома досталось от другого родителя).

Если бы гены A и B были локализованы не в одной хромосоме, а в разных негомологичных, то с равной вероятностью ген A мог оказаться в гамете как с геном b, так и с геном B. Тогда во втором поколении наблюдалось бы стандартное менделевское расщепление по фенотипу: 9A-B- : 3A-bb : 3aaB- : 1aabb (вместо черточек может быть как доминантный так и рецессивный аллель).

То есть 6 из 16 мух имели бы рекомбинантные признаки – серое тело короткие крылья и черное тело длинные крылья.

Однако количество кроссоверных мушек существенно меньше, что говорит о сцеплении генов, когда доминантный ген A преимущественно наследуется совместно с геном B, рецессивный ген a совместно с рецессивным геном b.

Наличие же кроссоверных организмов говорит о том, что сцепление между A и B, а также a и b не полное.

Если в результате кроссинговера появилась хромосома, содержащая гены A и b (или a и B), то в дальнейшем уже они будут наследоваться совместно, т.

е. образуют новую группу сцепления.

Процент кроссинговера зависит от степени удаленности генов в одной хромосоме. Чем гены дальше друг от друга, тем меньше они сцеплены между собой, т.

е. существует большая вероятность обмена участком с гомологичной хромосомой. Близко близко расположенные гены почти всегда наследуются согласно закону Моргана.

Анализ частоты кроссинговера позволяет строить генетические карты. Расстояние между генами измеряется в сантиморганидах (или просто морганидах).

При этом если кроссоверных гамет 1%, то расстояние между генами считают равным 1 морганиде. Это значит, что гены расположены достаточно близко друг к другу, и кроссинговер между ними редок.

Если расстояние между генами равно 25 морганид, то вероятность получить кроссоверный организм равна 25%, т. е. гены локализованы в одной хромосоме достаточно далеко друг от друга.

Лекция № 18. Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико.

Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25°С дает многочисленное потомство.

Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых).

При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями).

Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb, а отцовский — один тип — аb.

Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb. Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз.

В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Аb и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов.

Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Это интересно:  Наследование машины после смерти отца 2019 год

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно.

Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер.

Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов.

Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т.

Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики.

    Перейти к лекции №19 «Генетика пола»

    Смотреть оглавление (лекции №1-25)

    Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме.

    Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

    Моргана можно сформулировать следующим образом: гены, находящиеся в одной хромосоме, образуют группу сцепления и часто наследуются совместно, при этом частота совместного наследования зависит от расстояния между генами (чем ближе, тем чаще).

    Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

    Например, ген A сцеплен с геном B (AB), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов (ab).

    Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB. Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах).

    Если при независимом распределении всех типов гамет (AB, ab, Ab, aB) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше.

    Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

    Особо выделяют сцепленное с полом наследование, когда исследуемый ген находится в половой (обычно X) хромосоме.

    В данном случае изучается наследование одного признака, а вторым выступает пол.

    Если наследуемый признак сцеплен с полом, то он по-разному наследуется при реципрокных скрещиваниях (когда признаком сначала обладает родитель женского пола, потом мужского).

    Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a).

    Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

    Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение.

    Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

    Гены в хромосоме расположены линейно. Расстояние между ними измеряется в сантиморганах (сМ).

    1 сМ соответствует наличию 1% кроссоверных гамет. Проводя различные скрещивания и статистически анализируя потомков, ученые выявляют сцепленные гены, а также расстояние между ними.

    На основе полученных данных строятся генетические карты, в которых отражается локализация генов в хромосомах.

    Закон Томаса Моргана

    Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

    У любого организма генов значительно больше, чем хромосом.

    Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

    Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

    В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья.

    Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.

    При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой, имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья.

    При дальнейшем скрещивании между собой гибридных мух первого поколения в F2 не произошло ожидаемого расщепления по фенотипу 9:3:3:1.

    Вместо этого в F2 были получены мухи с родительскими фенотипами в соотношении примерно 3:1. Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме.

    Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно — сцепленно, то есть наследуются преимущественно вместе.

    Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов.

    Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело — зачаточные крылья, черное тело — длинные крылья. (Особей с такими фенотипами немного — около 8,5% каждого типа.) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.

    Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями.

    Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.

    При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5, что характеризует неполное сцепление.

    Причина нарушения сцепления заключается в том, что в ходе мейоза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.

    У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным.

    Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.

    Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссинговера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков.

    Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

    Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера.

    Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

    Сравните результаты скрещивание дрозофил:
    а) Полное сцепление без кроссинговера
    б) С частотой кроссинговера равной 17 %

    Результатом исследований Т.Х.Моргана стало создание им хромосомной теории наследственности:

    Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

    Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

    Гены расположены в хромосомах в определенной линейной последовательности;

    4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

    5. Сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинантных хромосом;

    6. Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

    Каждый вид имеет характерный только для него набор хромосом — кариотип.

    Ещё материалы по генетике:
    Законы Менделя
    Предпосылки появления генетики
    Роль генетики в медицине
    История развития генетики в России

    Закон Моргана

    Хромосомы

    Чтобы рассказать кратко и понятно о законе Томаса Моргана, следует для начала вспомнить, что такое хромосома.

    Хромосома – это структура, находящаяся в ядре клетки и несущая наследственную информацию. Состоит из длинной цепи ДНК, которая в свою очередь состоит из генов – единиц наследственной информации. Каждый ген отвечает за определённый признак. Набор хромосом называется кариотипом.

    Рис. 1. Хромосома.

    Мендель рассматривал признаки, находящиеся в разных хромосомах. При скрещивании образуются разные комбинации генов, формирующие генотип индивида.

    В отличие от закона Менделя закон Моргана применим к генам, находящимся в одной хромосоме.

    Закон

    Формулировка закона звучит следующим образом: гены, расположенные в одной хромосоме близко друг к другу, образуют группу и наследуются сцеплено. Число сцепленных групп соответствует гаплоидному набору – половине полного набора хромосом. У человека 46 хромосом, т.е. 23 пары, соответственно 23 группы сцепления.

    Рис. 2. Закон Моргана.

    Частота наследования зависит от расстояния между генами. Чем ближе находятся гены, образующие группы, тем чаще наследуются сцепленные признаки, т.е. при близком расположении сильнее сила сцепления.

    Примеры сцепленного наследования:

    • окраска семян кукурузы сцеплена со структурой их поверхности (гладкая или морщинистая);
    • окраска цветков душистого горошка сцеплена с формой пыльцы;
    • болезни (дальтонизм, гемофилия) сцепленны с Х-хромосомой.

    Если гены не сцеплены, то образуется четыре типа гамет AaBb – AB, aB, Ab, ab. При скрещивании гибридов соотношение фенотипов будет 9:3:3:1 (произойдёт расщепление). При сцепленном наследовании образуется два типа гамет – AB и ab. В этом случае поколение F2 даст потомство с фенотипом 3:1.

    Кроссинговер

    Закон сцепленного наследования Т. Моргана может нарушаться. Происходит обмен участками генов между гомологичными хромосомами, и образуются новые комбинации генов. Такое явление называется кроссинговером. Нарушение связей происходит в мейозе при конъюгации (I профаза – сближение и соединение). Гомологичные хромосомы обмениваются участками, нарушая сцепленные связи. В этом случае полностью соблюдается третий закон Менделя.

    Рис. 3. Кроссинговер.

    Работа Моргана заключалась в следующем:

    • мушки дрозофилы имеют сцепленные гены – особи с серым телом (A) имеют длинные крылья (B), а особи с чёрным телом (a) – короткие крылья (b);
    • при скрещивании двух особей с генотипом AABB и aabb всё первое поколение (100 %) будет серым с длинными крыльями (AaBb);
    • предполагалось, что при анализирующем скрещивании AaBb с aabb по закону Менделя соотношение фенотипов будет 1:1:1:1 (по 25 %), т.е. AaBb, Aabb, aaBb, aabb, следовательно, гены лежат в разных хромосомах;
    • Морган при анализирующем скрещивании получил два фенотипа – AaBb и aabb, т.к. два признака сцеплены;
    • в соответствии с кроссинговером около 7 % мушек были серые с короткими крыльями или тёмные с длинными крыльями.

    Возможность кроссинговера возрастает, если сцепленные гены расположены на значительном расстоянии друг от друга. Чем ниже процент кроссинговера, тем больше вероятность сцепленного наследования.

    Что мы узнали?

    Из урока 9 класса биологии узнали о строении хромосом и законе Томаса Моргана, связанном с расположением генов. Находящиеся в тесном сцеплении гены наследуются вместе. Связь может нарушаться при кроссинговере – явлении, при котором образуются новые комбинации генов из ранее сцепленных групп.

    Статья написана по материалам сайтов: studopedia.net, ekoshka.ru, obrazovaka.ru.

    »

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector