+7 (499) 938-69-47  Москва

+7 (812) 467-45-73  Санкт-Петербург

8 (800) 511-49-68  Остальные регионы

Бесплатная консультация с юристом!

Особенности сцепленного наследования генов 2019 год

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом пар хромосом. Однако в организме число генов, как правило, значительно превышает количество хромосом.

Например, у кукурузы изучено более 500, у мухи дрозофилы — более 1000, а у человека — несколько тысяч генов, тогда как число хромосом у них 10, 4 и 23 пары соответственно. Это дает основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному набору хромосом.

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигибрид АаВЬ образует четыре типа гамет (АВ, Аb, аВ и ab) в равных количествах, то такой же дигибрид АаВb при сцеплении генов образует только два типа гамет: АВ и ab тоже в равных количествах, которые повторяют комбинацию генов в хромосоме родителя.

Было установлено, что, кроме обычных гамет при сцепленном наследовании возникают и другие — Аb и аВ — с новыми комбинациями генов, отличающихся от родительской гаметы. Причиной возникновения новых гамет является обмен участками гомологичных хромосом или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу сцепления и выражается в морганидах (в честь Т. Моргана) или в процентах рекомбинации (кроссинговера). Генетическое расстояние, на котором кроссинговер происходит с вероятностью 1 %, представляет собой сантиморган (сМ). Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная величина кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, неотличимое от независимого наследования. Кроме того, кроссоверных гамет в процентном соотношении всегда меньше, чем некроссоверных.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым обеспечить повышение выживаемости организмов в I процессе эволюции.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин — 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Это интересно:  Наследование приватизированной квартиры без завещания 2019 год

Кроссинговер. Этот процесс происходит в профазе I мейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом (рис. 3.72). Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.

Рис. 3.72. Кроссинговер как источник генетического разнообразия гамет:

I — оплодотворение родительских гамет а и б с образованием зиготы в; II — гаметогенез в организме, развившемся из зиготы в; г — кроссинговер, происходящий между гомологами в профазе I; д — клетки, образовавшиеся после 1-го мейотического деления; е, ж — клетки, образовавшиеся после 2-го деления мейоза (е — некроссоверные гаметы с исходными родительскими хромосомами; ж — кроссоверные гаметы с перекомбинацией наследственного материала в гомологичных хромосомах)

Понятно, что кроссинговер как механизм рекомбинации эффективен лишь в том случае, когда соответствующие гены отцовской и материнской хромосом представлены разными аллелями. Абсолютно идентичные группы сцепления при кроссинговере не дают новых сочетаний аллелей.

Рис. 3.73. Кроссинговер в соматических клетках:

1 — соматическая клетка, в гомологичных хромосомах которой ген А представлен двумя разными аллелями (А и а); 2 — кроссинговер; 3 — результат обмена соответствующими участками между гомологичяыми хромосомами; 4 — расположение гомологов в плоскости экватора веретена деления в метафазе митоза (два варианта); 5 — образование дочерних клеток; 6 — образование гетерозитотиых по гену А клеток, сходных с материнской клеткой по набору аллелей (Аа); 7 — образование гомозиготных по гену А клеток, отличающихся от материнской клетки по набору аллелей (АА или аа)

40.Наследование. Типы наследования. Особенности аутосомного, Х-сцепленного и голандрического типов наследования. Полигенное наследование.

под наследственностью понимают свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируются общие признаки и свойства данного типа клеток и вида организмов, а также некоторые индивидуальные особенности родителей. На популяционно-видовом уровне организации жизни наследственность проявляется в поддержании постоянного соотношения различных генетических форм в ряду поколений организмов данной популяции (вида).

Наследственность – свойство живых организмов, обеспечивающее материальную преемственность онтогенеза в определенных условиях внешней среды. Гены детерминируют последовательность полипептидной цепи.

Наследование – передача информации от одного поколения к другому. Благодаря наследственности стало возможно существование популяций, видов и других групп.

Аутосомное наследование. Характерные черты аутосомного наследования признаков обусловлены тем, что соответствующие гены, расположенные в аутосомах, представлены у всех особей вида в двойном наборе. Это означает, что любой организм получает такие гены от обоих родителей. В соответствиис законом чистоты гамет в ходе гаметогенеза все половые клетки получают по одному гену из каждой аллельной пары (рис. 6.6). Обоснованием этого закона является расхождение гомологичных хромосом, в которых располагаются аллельные гены, к разным полюсам клетки в анафазе I мейоза

Ввиду того что развитие признака у особи зависит в первую очередь от взаимодействия аллельных генов, разные его варианты, определяемые разными аллелями соответствующего гена, могут наследоваться по аутосомно-доминантному или аутосомно-рецессивному типу, если имеет место доминирование. Возможен также промежуточный тип наследования признаков при других видах взаимодействия аллелей (см. разд. 3.6.5.2).

При доминировании признака, описанном Г. Менделем в его опытах на горохе, потомки от скрещивания двух гомозиготных родителей, различающихся по доминантному и рецессивному вариантам данного признака, одинаковы и похожи на одного изних (закон единообразия F1). Описанное Менделем расщепление по фенотипу в F2 в отношении 3:1 в действительности имеет место лишь при полном доминировании одного аллеля над другим, когда гетерозиготы фенотипически сходны с доминантными гомозиготами(закон расщепления в F2).

Наследование рецессивного варианта признака характеризуется тем, что он не проявляется у гибридов F1, а в F2 проявляется у четверти потомков.

В случаях формирования у гетерозигот нового варианта признака по сравнению с гомозиготами, что наблюдается при таких видах взаимодействия аллельных генов, как неполное доминирование, кодоминирование, межаллельная комплементация, гибриды F1 не похожи на родителей, а в F2 образуется три фенотипических группы потомков (рис. 6.7, II).

Не нашли то, что искали? Воспользуйтесь поиском:

Сцепленное наследование, его специфика и особенности расщепления в потомстве

В 1906 г. английские генетики У. Бетсон и Р. Пеннет в опытах по скрещиванию душистого горошка обнаружили, что некоторые признаки наследуются вместе, а не независимо, как следует из законов Менделя. Это явление получило название сцепления генов. В дальнейшем оно было обнаружено у всех организмов.

Впервые сцепление было детально изучено Т. Морганом в опытах на дрозофиле (рис.2). Он показал, что цвет глаз у дрозофилы — признак, сцепленный с полом, то есть гены, обуславливающие этот признак, находятся в Х-хромосомах. На основании этого он предположил, что сцепление генов является следствием их нахождения в одной хромосоме, поэтому правило независимого комбинирования генов здесь не действует. Аналогичным образом наследуются все признаки, определяемые генами, расположенными в Х-хромосомах, и у других организмов, где гетерогаметен мужской пол. Так, у человека около 60 генов наследуются сцеплено с Х-хромосомой, в том числе гены, обуславливающие такие заболевания как гемофилия, цветовая слепота, мускульная дистрофия, дальтонизм и другие.

Существуют также гены, наследуемые сцеплено с Y-хромосомой, то есть наследуемые исключительно по мужской линии. Такие признаки называются голандрическими. У человека таким образом наследуется ген, ответственный за развитие мужской потенции, гены, контролирующие размер зубов, волосатость мочек ушей (ихтиоз) и другие.

Законы Менделя справедливы для признаков, которые определяют гены, находящиеся в разных хромосомах. Все гены одной хромосомы образуют одну группу сцепления, а число групп сцепления у особей данного вида всегда соответствует гаплоидному числу хромосом n.

наследственный размножение гетерозис расщепление

Рис.2. Скрещивание белоглазой самки с красноглазым самцом у дрозофилы

Изучая явление сцепления генов, Морган и его ученики установили, что сцепление почти никогда не бывает полным. Если гены сцеплены, то дигетерозиготы при скрещивании должны давать расщепление не на 4 фенотипических класса, как при независимом наследовании, а на 2, причём эти фенотипические классы должны точно соответствовать фенотипам родителей. Так бывает при полном сцеплении генов. Однако часто при скрещивании дигетерозиготы по генам, наследуемым сцеплено, то есть по генам, расположенным в одной хромосоме, в потомстве появляются особи с новым сочетанием генов, которые отсутствовали у родителей.

Это интересно:  Особенности наследования денежных вкладов 2019 год

Если гены разных аллельных пар лежат в одной и той же хромосоме, следовательно, сцеплены, то единственной причиной их перекомбинации может быть процесс конъюгации гомологичных хромосом в профазе мейоза. Во время конъюгации хромосомы сближаются и прикладываются друг к другу гомологичными участками, образуя биваленты (четвёрки хроматид). В это время между хроматидами может происходить обмен гомологичными участками — перекрест хромосом или кроссинговер (рис. 3), открытый Т. Морганом в 1911 году.

Рис. 3. Схема перекреста хромосом и рекомбинация находящихся в них генов.

Гаметы с хромосомами, претерпевшими кроссинговер, называются кроссоверными, соответственно и особи, возникшие с участием кроссоверных гамет называют кроссоверными или рекомбинантными, а образованные без них — некроссоверными или нерекомбинантными.

У любого вида организмов число генов всегда во много раз больше числа хромосом. Следовательно, в каждой хромосоме находится много генов, которые наследуются вместе, то есть образуют группу сцепления. Число групп сцепления соответствует числу пар гомологичных хромосом. Например, у дрозофилы имеется 4, а у кукурузы 10 пар хромосом, и соответственно у них имеются 4 и 10 групп сцепления.

Определение групп сцепления — трудоёмкая работа, требующая многократных скрещиваний и наблюдений. Кроме того, для этого необходимо иметь много мутантных форм по различным признакам. Поэтому группы сцепления установлены не полностью даже у наиболее хозяйственно важных растений и животных.

35. Генетический анализ полного сцепления.

30. Сцепленное наследование признаков

32. Особенности наследования признаком при неполном и полном сцелении

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ПРИЗНАКОВ

Мы познакомились с дигибридным скрещиванием и уяснили, что независимое комбинирование признаков объясняется тем, что расщепление одной пары аллельных генов, определяющих соответствующие признаки, происходит независимо от другой пары. Однако это наблюдается только в том случае, когда гены разных пар находятся в разных парах хромосом и при образова­нии половых клеток гибрида в мейозе отцовские и материнские хромосомы независимо комбинируются. Но количество хромо­сом очень ограниченно по сравнению с количеством признаков, каждый из которых развивается под контролем определенного гена. Так, у дрозофилы известно около 7000 генов при четырех парах хромосом. Предполагается, что у человека не менее 50 тыс. генов при 23 парах хромосом, и т. д. Отсюда следует, что в каждой паре хромосом должны быть локализованы сотни алле­лей. Естественно; что между генами, которые находятся в одной хромосоме, наблюдается сцепление и при образовании половых клеток они должны передаваться вместе.

Сцепленное наследование открыли в 1906 г. английские гене­тики У. Бэтсон и Р. Пеннет при изучении наследования призна­ков у душистого горошка, но они не смогли вскрыть причины этого явления. Природу сцепленного наследования в 1910 г. вы­яснили ученые Т. Морган и его сотрудники К. Бриджес и А. Стертевант. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной для генетических опытов. В клетках тела дрозофилы находится 4 пары хромосом. Она отличается очень высокой плодовитостью — одна пара дает более ста потомков. У нее большая скорость развития — в течение 12—15 дней после оплодотворения из яйца развиваются личинка, куколка и взрослая особь, которая почти сразу же способна давать потомство. Можно исследовать в тече­ние года более двадцати поколений. Мухи серого цвета, с крас­ными глазами,. имеют маленькие размеры (около 3 мм), легко разводятся в биологических пробирках; для изучения их призна­ков можно пользоваться лупами. При просмотре сотен тысяч особей Морган обнаружил множество разных мутаций: встреча-лись мухи с черным и желтым телом, с белыми и другого цвета глазами, с измененной формой и положением крыльев и т. д. Иногда попадались особи, имеющие сразу несколько мутаций, например черное тело, зачаточные крылья, киноварные глаза.

Изучая наследование разных пар признаков при дигибридном и полигибридном скрещиваниях, Морган и его сотрудники обна­ружили большое число примеров сцепленного (совместного) их наследования. Все изученные признаки распределились на четы­ре группы сцепления в соответствии с числом и размерами хро­мосом у дрозофилы. На этом основании Морган сделал вывод о том, что гены, определяющие эти признаки, находятся в хромо­сомах. Гены, расположенные в одной хромосоме, представляют собой группу сцепления.

Сцепление генов — это совместное наследование генов, располо­женных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Например, у дрозо­филы 4 группы сцепления, у человека 23, у крупного рогатого скота 30, у свиней 19 и т. д.

Мысль о расположении генов в хромосомах высказал Сеттон еще в 1902 г. Он обнаружил параллелизм в поведении хромосом в мейозе и наследовании признаков у одного из видов кузнечика. Дальнейшие исследования, проведенные Морганом, показали, что сцепление генов, расположенных в одной хромосоме, может быть полным или неполным.

Наиболее четко разница в поведении сцепленных и независи­мо наследующихся генов выявляется при проведении анализиру­ющего скрещивания. При независимом наследовании двух пар признаков у гибрида Fi (АаВЬ) с равной вероятностью образуется 4 сорта гамет: АВ, Ab, aB, ab. При скрещивании с полным рецессивом (aabb) количество сортов гамет у гибрида обусловли­вает число типов потомков и одинаковую вероятность их появ­ления, так как гаметы рецессивной особи (ab) не могут изменить проявления доминантных и рецессивных генов гамет гибрида. В результате соотношение фенотипов потомства будет равно 1:1:1:1. Если же обе пары аллельных генов расположены в одной паре хромосом, то при образовании половых клеток гены этих аллелей не смогут свободно комбинироваться. В этом случае наблюдается сцепленное наследование.

Т. Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость — над зачаточны­ми крыльями. Обозначим ген серой окраски тела В, аллельный ему ген черной окраски тела Ь; ген длиннокрылое™ V, аллель­ный ему ген зачаточных крыльев v. Обе пары этих генов нахо-дятся в одной и той же второй паре хромосом. По обеим парам Признаков родительские формы были гомозиготны: самка по рецессивному признаку черного тела (bb) и доминантному при­знаку длиннокрылое™ (VV), самец по доминантному признаку серой окраски. (ВВ) и рецессивному признаку зачаточных кры­льев (w>. Гаметы родителей при редукционном делении получа­ют у материнской формы хромосому с генами b и V, у отцов­ской»—с генами В и v. Все потомство первого поколения (Fi) имело серое тело и длинные крылья (рис. 13) и было гетерози­готно по обеим парам признаков (bV/Bv). Затем из Fi были отобраны самцы, которых скрестили с гомозиготными по обоим рецессивным генам самками, черными зачаточнокрылыми (bv/bv), т. е. было проведено анализирующее скрещивание, в результате которого при независимом комбинировании призна­ков должны были бы получить потомство четырех фенотипов в равных соотношениях: серых длиннокрылых, серых с зачаточны­ми крыльями, черных длиннокрылых, черных с зачаточными крыльями, но были получены потомки только двух фенотипов, похожих на исходные родительские формы: черные длиннокры­лые и серые короткокрылые. В этом случае наблюдается полное сцепление признаков. Это связано с тем, что у гетерозиготного самца в одной и той же хромосоме из гомологичной пары распо­ложены и ген черной окраски, и ген длинных крыльев, в дру­гой — ген серой окраски и ген зачаточнокрылости.

Это интересно:  Сущность и правовое регулирование наследования 2019 год

При спермиогенезе в период мейоза гомологичные хромосо­мы расходятся в разные половые клетки. Образуется только два сорта гамет: один с хромосомой, которая несет гены Ъ и V, другой с хромосомой, в которой расположены гены В и v. При сочетании указанных гамет с гаметами особи с рецессивными признаками и образуется потомство только двух типов. При пол­ном сцеплении гены, расположенные в одной хромосоме, всегда пере­даются вместе. Полное сцепление пока установлено только у са>щов дрозофилы и самок тутового шелкопряда.

В следующем опыте, так же как и в предыдущем, Морган скрещивал черных длиннокрылых самок с серыми зачаточно-крылыми самцами. В первом поколении получил все потомство серое длиннокрылое. Затем снова произвел анализирующее скре­щивание, но из первого поколения отобрал не самца,, а самку и скрестил ее с черным с зачаточными крыльями самцом (рис. 14). В этом случае появилось потомство не двух типов, как при полном сцеплении, а четырех: серое о-зачаточными крыльями, черное длиннокрылое, серое длиннокрылое и черное с зачаточ­ными крыльями, но не в равных соотношениях, как при незави­симом комбинировании признаков, а со значительным преобла­данием фенотипов, сходных с родительскими формами. 41,5 % мух было серых с зачаточными крыльями, как у одного исходно­го родителя, и 41,5 % особей черных длиннокрылых, как у дру­гого исходного родителя. Только 17 % потомков родилось с новым сочетанием признаков: 8,5 % черных с зачаточными кры­льями и 8,5 % серых длиннокрылых. Таким образом, 83 % по­томков имели сочетание признаков, как у исходных родитель­ских форм, но появились особи и с новым сочетанием призна­ков. Следовательно, сцепление является неполным. / Встал вопрос: почему появились особи с новой комбинацией родительских признаков? Для объяснения этого явления Морган использовал и развил теорию хиазмотипии бельгийского цитолога Янсенса. В 1909 г. Янсенс наблюдал, что при спермиогенезе у саламандры в профазе мейоза гомологичные хромосомы конъ-югируют, а затем, при начале расхождения, образуют фигуры в хромосомы обмениваются участками. Если сцепленные гены лежат в одной хромосоме и у гетерозигот при образовании гамет проис­ходит рекомбинация этих генов, значит, гомологичные хромосо­мы во время мейоза обменялись своими частями. Обмен гомоло­гичных хромосом своими частями называется перекрестом или крос-синговером (английское слово crossingover означает образование перекреста). Особей с новыми сочетаниями признаков, образо­вавшимися в результате кроссинговера, называют кроссоверами.

Вернемся к рисунку 14. У самки Fi, гетерозиготной по обеим парам признаков, в одной из гомологичных хромосом располо­жены гены Ъ и V, в другой — аллельные им гены В и v. В профазе редукционного деления, когда две гомологичные хромо­сомы соединились в один бивалент, каждая из хромосом удвоена и состоит из двух хроматид. Всего будет 4 хроматиды. Между двумя хроматидами гомологичных хромосом и происходит обмен их частями. В результате ген Ъ, расположенный в хроматиде одной гомологичной хромосомы, может соединиться с геном v, расположенным в хроматиде другой гомологичной хромосомы, и как результат одного события образуется вторая хроматида, где соединятся гены В и V. В дальнейшем хроматиды разойдутся и образуются кроссоверные гаметы с хромосомами с новым соче­танием генов (bv и BV).

Две другие хроматиды из пары гомологичных хромосом не участвуют в перекресте и сохраняют в первоначальном сочетании материнские (bV) и отцовские (Bv) гены. Образование новых кроссоверных гамет обеспечило появление дрозофил -с новым сочетанием признаков: черных с зачаточными крыльями и серых длиннокрылых. Однако большая часть потомков будет сходна с исходными родителями (черные длиннокрылые и серые коротко-крылые). Морган приходит к выводу, что количество появления новых форм зависит от частоты перекреста, которая определяет­ся по следующей формуле:

Если, например, общее число потомков 900, а новых кроссо­верных форм 180, то частота перекреста будет составлять 20 %. Морган установил, что частота перекреста между определенной парой геновотносительно постоянная величина, но различная для разных пар генов. На основании этого был сделан вывод о том, что по частоте перекреста можно судить о расстояниях между генами. За единицу измерения перекреста принята его величина, равная 1 %. Иногда ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста мень­ше. Установлено, что количество кроссоверных особей к общему числу потомков никогда не превышает 50 %, так как при очень больших расстояниях между генами чаще происходит двойной кроссинговер и часть кроссоверных особей остается неучтенной. Их можно учесть при изучении не двух пар сцепленных призна­ков, а трех или четырех. В этом случае, учитывая двойные и тройные перекресты, можно точнее судить о расстояниях и час­тоте перекреста между генами.

Статья написана по материалам сайтов: studopedia.ru, vuzlit.ru, studfiles.net.

»

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector