+7 (499) 322-30-47  Москва

+7 (812) 385-59-71  Санкт-Петербург

8 (800) 222-34-18  Остальные регионы

Бесплатная консультация с юристом!

Явление сцепленного наследования генов изучал 2019 год

Большую работу по изучению наследования неаллельных генов, расположенных в паре гомологичных хромосом, выполнили американский ученый Т.Морган и его ученики. Ученые установили, что гены, расположенные в одной хромосоме, наследуются совместно, или сцеплено. Группы генов, расположенные в одной хромосоме, называют группами сцепления. Сцепленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объектов равно числу пар хромосом, то есть гаплоидному числу хромосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т.д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме АаВЬ. Особь с таким генотипом производит два типа гамет: аЬ и АВ — в равных количествах, которые повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме таких обычных гамет возникают и другие, новые —АЬ и аВ, т.е. с новыми комбинациями генов, отличающимися от родительской гаметы. Было доказано, что причина возникновения новых гамет заключается в перекресте (кроссинговере) гомологичных хромосом. Гомологичные хромосомы в процессе мейоза перекрещиваются и обмениваются участками. В результате этого возникают качественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния между генами в хромосоме. Частота (процент) перекреста между двумя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и тем чаще осуществляется перекрест. Следовательно, о расстоянии между генами в хромосоме можно судить по частоте перекреста.

Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомологичными хромосомами, постоянно осуществляет рекомбинацию генов. Т.Морган и его сотрудники показали , что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: кукурузы, человека, мыши, дрожжей, гороха, пшеницы, томата, плодовой мушки дрозофилы.

Положение хромосомной теории :

1. Каждый ген имеет своё строго определённое положение в хромосоме.

2. Гены расположены в хромосоме линейно в строго определённом порядке.

3. Причиной появления особей с перекомбенированными признаками является кроссенговер.

4. Чем дальше гены друг от друга расположены в хромосоме, тем больше вероятность кроссенговера между ними.

ВОПРОС 2. ЗАДАЧА.

БИЛЕТ№ 22

ВОПРОС 1.

Явление сцепленного наследования изучено Т. Морганом, который установил, что материальной основой сцепления является хромосома (хромосомная теория наследственности). Суть сцепленного наследования подробно описана в учебниках, поэтому отметим только, что при анализе такого явления, как нарушение сцепления, происходящего в результате перекреста хромосом, или кроссинговера, необходимо обратить особое внимание на биологический смысл этого феномена. При перекресте хромосом происходит обмен идентичными участками между гомологичными хромосомами, а значит, возникают новые комбинации генов. Этот процесс лежит в основе комбинативной изменчивости что обусловлено различными взаимодействиями генов (как аллельных, так и неаллельных).

Обсуждая вопрос о природе изменчивости живых организмов, построим некоторую общую схему, иллюстрирующую разные формы этого явления:

Изменчивость делится на : ненаследственная ( фенотипическая или модификационная )

наследственная (генотипическая ) делится на : комбинативную

Модификационная изменчивость — это ненаследуемое изменение признаков (фенотипа) особи в определенных пределах под действием внешних факторов. Явление модификационной изменчивости хорошо иллюстрируется опытами французских исследователей: проросток одуванчика разрезали вдоль и высаживали половинки в разных условиях — в теплице и в открытом грунте высокогорного района. К концу сезона выросли совершенно непохожие друг на друга растения. Растение, развивавшееся в теплице, было высоким с большими сочными листьями и крупным цветком, а одуванчик, выросший в горах, был приземистым с прикорневой розеткой мелких листьев и маленьким цветком. Однако семена обоих растений, посаженные в одинаковые условия, дали потомков, не отличавшихся по внешнему виду. Отсюда следует, что в ходе индивидуального развития организм может существенно изменяться под влиянием внешней среды, однако его генотип при этом остается неизменным. Следовательно, подобные фенотипические изменения не наследуются.

Изменения фенотипа под воздействием факторов внешней среды могут происходить в ограниченном диапазоне (широком или узком), который определяется генотипом. Диапазон, в пределах которого признак может варьировать, носит название нормы реакции. Так показатели, использующиеся в животноводстве — удойность коров и жирность их молока, — могут варьировать между особями, но в разных пределах (удойность имеет относительно большой

ВОПРОС 2. ЗАДАЧА.

ВОПРОС 1.

Модификационная изменчивость. Разнообразие фенотипов, возникающих у организмов под влиянием условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может служить изменчивость генетически сходных (идентичных) особей. Многие виды растений, например картофель, обычно размножаются вегетативно, в этом случае все потомки обладают одинаковым генотипом. Многие растения существенно отличаются по высоте, кустистости, количеству и форме клубней и другим показателям. Причина этой очень широкой модификационной изменчивости состоит в разнообразном влиянии среды, которое испытывает каждый саженец картофеля. Модификационные изменения (модификации) не связаны с изменением генов. Однако модификации могут сильно влиять на их работу, а также на активность ферментов. Хорошо известно, что при низких температурах ферменты гораздо менее активны, что не может не влиять на рост растений и микроорганизмов, развитие животных. Следовательно, действие факторов среды очень существенно для протекания многих физиологических и формообразовательных процессов. Однако эти воздействия, как правило, не влияют на свойства генов, которые передаются в следующие поколения без принципиальных изменений .Именно поэтому модификации не наследуются. Это важное обобщение сделал крупный немецкий биолог А.Вейсман.

Модификационная изменчивость встречается у всех организмов, независимо от способа размножения, видовой принадлежности и разнообразия условий окружающей среды.

В некоторых случаях модификации не имеют приспособительного значения, а, напротив, представляют собой аномалии и даже уродства. Такие модификации получили название морозов. Морфозы представляют собой результат резкого отклонения индивидуального развития организма от нормального пути. Например, обработка личинок и куколок дрозофилы высокими температурами приводит к появлению большого количества мух с измененной формой крыльев и туловища.

Статистические закономерности модификацнонной изменчивости. Если мы измерим длину и ширину листьев, взятых с одного дерева, то увидим, что размеры их варьируются в довольно широких пределах. Эта изменчивость — результат разных условий развития листьев на ветвях дерева; генотип их одинаков. Если некоторое количество листьев расположить в порядке нарастания, или убывания признака то получится ряд изменчивости данного признака, который носит название вариационного ряда, слагающегося из отдельных вариант. Варианта, следовательно, есть единичное выражение развития признака. Если мы подсчитаем число отдельных вариант в вариационном ряду, то увидим, что частота встречаемости их неодинакова. Чаще всего встречаются средние члены вариационного ряда, а к обоим концам ряда частота встречаемости будет снижаться. Чем однообразнее условия развития, тем меньше выражена модификационная изменчивость, тем короче будет вариационный ряд. Чем разнообразнее условия среды, тем шире модификационная изменчивость. Размах вариации зависит и от генотипа.

Норма реакции. Итак, признаки развиваются в результате взаимодействия генотипа и среды. Один и тот же генотип может в разных условиях среды давать разное значение признака. Пределы, в которых возможно изменение признаков у данного генотипа, называют нормой реакции.

ВОПРОС 2. ЗАДАЧА.

БИЛЕТ№24

ВОПРОС 1.

Мутации — это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, их части или отдельные гены. Они могут быть полезны, вредны и нейтральны для организмов.

Хромосомные мутации — это перестройки хромосом. Структурные изменения хромосом Многие из хромосомных мутаций доступны изучению под микроскопом. Пути изменения структуры хромосом разнообразны. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т.д. Хромосомные мутации — результат отклонений в нормальном течении процессов клеточного деления. Основная причина возникновения различных хромосомных мутаций — разрывы хромосом и хроматид и воссоединения в новых сочетаниях.

Генные мутации. Генные, или точечные, мутации — наиболее часто встречающийся класс мутационных изменений. Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Они приводят к тому, что мутантный ген перестает работать, и тогда либо не образуются соответствующие РНК и белок, либо синтезируется белок с измененными свойствами, что проявляется в изменении каких-либо признаков организма. Вследствие генных мутаций образуются новые аллели. Это имеет важное эволюционное значение.

Генные мутации следует рассматривать как результат «ошибок» возникающих в процессе удвоения молекул ДНК. Изучение мутационного процесса показало, что изменяться (мутировать) могут все гены, контролирующее развитие любого признака организма. Большинство генных мутаций вредно для организма, но некоторые из них в определенных условиях жизни могут становиться полезными.

Генеративные и соматические мутации. Мутации могут возникать в любых клетках организма. Те из них, которые возникают в клетках половых зачатков и зрелых половых клетках, получили название генеративных. Мутации, возникающие во всех клетках тела, за исключением половых, называют соматическими.

Хотя механизмы возникновения обоих типов мутаций могут быть подобны, их вклад в наследование признаков и, следовательно, эволюционное значение совершенно различны. Соматические мутации проявляются мозаично, т.е. часть клеток данной ткани или органа отличается от остальных по каким-либо свойствам. Чем раньше в ходе индивидуального развития возникает соматическая мутация, тем большим оказывается участок тела, несущий мутантный признак (измененную окраску, форму или другое свойство). У растений, использующих бесполое или вегетативное размножение, соматические мутации могут иметь важное значение, особенно для селекции, поскольку вновь возникшая соматическая мутация может быть очень широко размножена и в этом отношении она становится подобной генеративной мутации. В ряде случаев новые сорта плодовых и ягодных растений были получены на основе использования соматических мутаций.

Основные положения мутационной теории. Основные положения мутационной теории формулируются следующим образом:

— мутации — это дискретные изменения наследственного материала;

— мутации — редкие события;

— мутации могут устойчиво передаваться из поколения в поколение;

— мутации возникают не направленно (спонтанно) и, в отличие от модификаций, не образуют непрерывных рядов изменчивости;

— мутации могут быть вредными, полезными и нейтральными.

ВОПРОС 2. ЗАДАЧА.

ВОПРОС 1.

Селекция является одной из важнейших областей практического приложения генетики. Теоретическая база селекции — генетика. Хотя генетика и селекция являются вполне самостоятельными дисциплинами, они неразрывно связаны между собой. Управление процессами наследования, изменчивости и индивидуального развития растений и животных требует знания законов наследственности, действия гена в системе генотипа, генетического потенциала данного вида и т.д. Современная селекция как наука опирается на огромный теоретический и экспериментальный багаж, накопленный в предыдущие десятилетия. И если прежде селекционную работу мог вести человек, вооруженный опытом и знанием методов отбора, то сейчас такая работа немыслима без сознательного использования законов наследственности, которые позволяют на научной основе находить пути повышения продуктивности растений, синтезировать новые сорта.

Задачи селекции. Задача селекции состоит в создании новых и улучшении уже существующих сортов растений, пород животных и штаммов микроорганизмов. Выдающийся советский генетик и селекционер, академик Н.И.Вавилов, определяя содержание и задачи современной селекции, указывал, что для успешной работы по созданию сортов и пород следует изучать и учитывать: исходное сортовое и видовое разнообразие растений и животных; наследственную изменчивость (мутации); роль среды в развитии и проявлении изучаемых признаков; закономерности наследования при гибридизации; формы искусственного отбора, направленные на выделение и закрепление желательных признаков.

Основные направления селекции. В соответствии с требованиями, предъявляемыми к сортам различных культур, породам животных и применительно к климатическим, почвенным зонам, селекция имеет следующие ориентации:

1. на продуктивность сортов растений и пород животных;

2. на качество продукции (технические, технологические свойства, химический состав зерна — содержание белка, клейковины, жиров, отдельных незаменимых аминокислот);

3. на физиологические свойства (скороспелость, засухоустойчивость, иммунитет к заболеваниям и т.д.);

4. на создание сортов интенсивного типа, способных высокопроизводительно использовать условия высокой современной агротехники, в том числе орошения, пригодность к механизированному возделыванию и т.д.

В современной селекции используются следующие основные виды и способы получения исходного материала:

1. Естественныепопуляции. К этому виду исходного материала относятся дикорастущие формы, местные сорта культурных растений и образцы мировой коллекции сельскохозяйственных растений Всесоюзного института растениеводства имени Н.И.Вавилова.

2.Гибридныепопуляции. Различают два вида гибридных популяций: 1) внутривидовые, создаваемые в результате скрещивания сортов и форм в пределах одного вида; 2) популяции, получаемые в результате скрещивания разных видов и родов растений (межвидовые и межродовые).

3. Самоопыленные линии. У перекрестноопыляющихся растений важным новым источником исходного материала являются самоопыленные линии. Их получают путем многократного принудительного самоопыления перекрестноопыляющихся растений. Лучшие линии скрещивают между собой или с сортами для создания гетерозисных гибридов. В результате такого скрещивания образуются гибридные семена, которые используют в течение одного года. Гибриды, полученные на основе самоопыленных линий, в отличие от обычных гибридных сортов, нужно ежегодно воспроизводить.

4,Искусственные мутации и полиплоидные формы. Этот вид исходного материала создается путем воздействия на растения различными видами радиации, химическими веществами, температурой, прививками и другими мутагенными средствами.

В селекции растений важное место занимает отдаленная гибридизация — скрещивание растений разных видов или родов. В развитии метода отдаленной гибридизации и преодолении трудностей получения плодовитых гибридов (обусловленных различиями в структуре генома, негомологичностью хромосом и др.) большое значение имели работы Г.Д.Карпеченко. В опытах по получению межродового гибрида (капусты и редьки), способного к размножению, он разобрал теорию и метод совмещения геномов родительских форм, отличающихся по количеству хромосом, с помощью искусственной полиплоидии.

В современной селекции для увеличения разнообразия исходного материала все шире используется явление полиплоидии. Полиплоидией называют явление кратного увеличения набора хромосом в ядрах клеток организмов. Растения, в соматических клетках которых содержится обычный двойной набор хромосом, называются диплоидными. Если у растений набор хромосом повторяется более двух раз, они являются полиплоидными. Большинство видов пшеницы имеют 28 или 42 хромосомы и относятся к полиплоидам, хотя известны диплоидные виды с 14 хромосомами (например, однозернянка). Среди видов табака и картофеля есть виды с 24, 48 и 72 хромосомами. Полиплоидия — довольно частое явление в природе, особенно у цветковых растений (злаковых, пасленовых, сложноцветных и др.). По внешним признакам полиплоиды обычно бывают более мощными, чем диплоиды, с рослыми крепкими стеблями, крупными листьями, цветками и семенами. Это объясняется тем, что у полиплоидов клетки значительно крупнее, чем у диплоидов.

В селекционной работе для создания разнообразия исходных форм широко применяется экспериментальный мутагенез — получение мутаций под воздействием рентгеновских или ультрафиолетовых лучей, низких или высоких температур, различных химических веществ и др. Большинство мутантов отличаются пониженной жизнеспособностью или не имеют хозяйственно ценных признаков. Все же часть мутаций вызывает благоприятные изменения отдельных признаков и свойств, не снижая жизнеспособности, а иногда даже повышая ее. Встречаются мутанты, проявляющие более высокую продуктивность, чем исходные сорта. Такие формы были получены у ячменя, овса, гороха, люпина, льна, арахиса, горчицы и других культур.

Порода (сорт) – искусственно созданная в процессе селекции совокупность особей которая характеризуется определенными наследственными особенностями: высокой продуктивностью, морфологическими и физиологическими признаками.

Сцепленное наследование генов.

Большую работу по изучению наследования неаллельных генов, расположенных в паре гомологичных хромосом, выполнили американский ученый Т.Морган и его ученики. Ученые установили, что гены, расположенные в одной хромосоме, наследуются совместно, или сцеплено. Группы генов, расположенные в одной хромосоме, называют группами сцепления. Сцепленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объектов равно числу пар хромосом, то есть гаплоидному числу хромосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т.д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме АаВЬ. Особь с таким генотипом производит два типа гамет: аЬ и АВ — в равных количествах, которые повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме таких обычных гамет возникают и другие, новые —АЬ и аВ, т.е. с новыми комбинациями генов, отличающимися от родительской гаметы. Было доказано, что причина возникновения новых гамет заключается в перекресте (кроссинговере) гомологичных хромосом. Гомологичные хромосомы в процессе мейоза перекрещиваются и обмениваются участками. В результате этого возникают качественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния между генами в хромосоме. Частота (процент) перекреста между двумя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и тем чаще осуществляется перекрест. Следовательно, о расстоянии между генами в хромосоме можно судить по частоте перекреста.

Это интересно:  Право наследование жены после смерти мужа 2019 год

Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомологичными хромосомами, постоянно осуществляет рекомбинацию генов. Т.Морган и его сотрудники показали , что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: кукурузы, человека, мыши, дрожжей, гороха, пшеницы, томата, плодовой мушки дрозофилы.

Положение хромосомной теории :

1. Каждый ген имеет своё строго определённое положение в хромосоме.

2. Гены расположены в хромосоме линейно в строго определённом порядке.

3. Причиной появления особей с перекомбенированными признаками является кроссенговер.

4. Чем дальше гены друг от друга расположены в хромосоме, тем больше вероятность кроссенговера между ними.

ВОПРОС 2.

Агроценоз. Биоценозы, которые возникают на землях сельскохозяйственного пользования, называют агроценозами. Они отличаются от природных сообществ, во-первых, пониженным разнообразием входящих в них видов и, во-вторых, пониженной способностью главного члена этих сообществ — культурных растений — противостоять конкурентам и вредителям. Культурные виды так сильно изменены селекцией в пользу человека, что без его поддержки не могут выдержать борьбу за существование.

Агроценозы поддерживаются человеком посредством больших затрат энергии (работы мускулов людей и животных, работы сельскохозяйственных машин, высвобождения связанной энергии, затрат на дополнительный полив и т.п.). Природные биоценозы таких дополнительных вложений энергии не получают. На полях обычно выращивают какой-либо один вид растений. С хозяйственной точки зрения идеальный агроценоз должен был бы состоять из этого единственного вида, а идеальная пищевая цепь всего из двух звеньев: растение — человек или растение — домашние животные. Но такая система в природе невозможна. Она неустойчива. На полях после вспашки целины быстро формируются довольно разнообразные сообщества из видов, способных выжить в условиях постоянного антропогенного воздействия на поля. Формируются цепи питания из трех-четырех звеньев, возникают конкурентные взаимодействия и другие типы отношений между видами.

Например, в полях на растениях пшеницы обнаруживается в среднем около300 видов одних только членистоногих. Кроме них здесь обитают грызуны и птицы, богатмир почвенных беспозвоночных животных, разнообразных грибков, бактерий, развивается довольно много видов сорных растений. Таким образом, в агроценозах взаимодействуют сотни и даже тысячи видов, хотя это разнообразие значительно меньше, чем в большинстве природных сообществ.

Агроценозы нельзя считать стабильными, так как они в гораздо большей степени, чем естественные ценозы (лес, луг, пастбища), подвержены эрозии, выщелачиванию, засолению и нашествию вредителей. Без участия человека агроценозы зерновых, овощных культур существуют не более года, ягодных растений — 3-4. Поэтому увеличение продуктивности агроценозов возможно при постоянной заботе о плодородии земли, обеспечении растений влагой, охране культурных популяций, сортов и пород растений и животных от неблагоприятных воздействий естественной флоры и фауны. Одним из путей повышения продуктивности агроценозов служит мелиорация почв. Мелиорация — это коренное улучшение почв. В отличие от обычных агротехнических приемов (вспашка, боронование т.д.), которые проводятся ежегодно, мелиорация оказывает длительное, коренное воздействие на землю и представляет собой целую систему организационно-хозяйственных, технических и других мероприятий.

На осушаемых и других землях применяют культурно-техническую мелиорацию: очистку земли от камней, деревьев, кочек и мха и др. Для окультуривания почв проводят химическую мелиорацию — известкование кислых почв, внесение удобрений. С целью повышения продуктивности агроценоза используются новые технологии выращивания растений, внедряются вновь созданные урожайные сорта.

Отличие от биогеоценоза:

1. направление отбора — искусственный ( в БГЦ естественный – выживают наиболее приспособленные.)

2. источник энергии – солнце + удобрения + корма ( в БГЦ солнце.)

3. круговорот элементов – не осуществляется т. к. часть элементов выносится с удобрениями (в БГЦ полный возврат элементов в почву )

4. видовое разнообразие – преобладает 1-2 вида (в БГЦ высокое )

5. саморегуляция устойчивость – нет саморегуляции, существует пока поддерживается человеком (в БГЦ саморегуляция идет, устойчивая )

6. продуктивность количество биомассы на единицу площади – больше (в БГЦ меньше )

БИЛЕТ№ 22

ВОПРОС 1.

Явление сцепленного наследования изучено Т. Морганом, который установил, что материальной основой сцепления является хромосома (хромосомная теория наследственности). Суть сцепленного наследования подробно описана в учебниках, поэтому отметим только, что при анализе такого явления, как нарушение сцепления, происходящего в результате перекреста хромосом, или кроссинговера, необходимо обратить особое внимание на биологический смысл этого феномена. При перекресте хромосом происходит обмен идентичными участками между гомологичными хромосомами, а значит, возникают новые комбинации генов. Этот процесс лежит в основе комбинативной изменчивости что обусловлено различными взаимодействиями генов (как аллельных, так и неаллельных).

Обсуждая вопрос о природе изменчивости живых организмов, построим некоторую общую схему, иллюстрирующую разные формы этого явления:

Изменчивость делится на : ненаследственная ( фенотипическая или модификационная )

наследственная (генотипическая ) делится на : комбинативную

Модификационная изменчивость — это ненаследуемое изменение признаков (фенотипа) особи в определенных пределах под действием внешних факторов. Явление модификационной изменчивости хорошо иллюстрируется опытами французских исследователей: проросток одуванчика разрезали вдоль и высаживали половинки в разных условиях — в теплице и в открытом грунте высокогорного района. К концу сезона выросли совершенно непохожие друг на друга растения. Растение, развивавшееся в теплице, было высоким с большими сочными листьями и крупным цветком, а одуванчик, выросший в горах, был приземистым с прикорневой розеткой мелких листьев и маленьким цветком. Однако семена обоих растений, посаженные в одинаковые условия, дали потомков, не отличавшихся по внешнему виду. Отсюда следует, что в ходе индивидуального развития организм может существенно изменяться под влиянием внешней среды, однако его генотип при этом остается неизменным. Следовательно, подобные фенотипические изменения не наследуются.

Изменения фенотипа под воздействием факторов внешней среды могут происходить в ограниченном диапазоне (широком или узком), который определяется генотипом. Диапазон, в пределах которого признак может варьировать, носит название нормы реакции. Так показатели, использующиеся в животноводстве — удойность коров и жирность их молока, — могут варьировать между особями, но в разных пределах (удойность имеет относительно большой

ВОПРОС 2.

Биосфера.Совокупность всех биогеоценозов (экосистем) Земли представляет собой большую экологическую систему — биосферу. Биогеоценоз является элементарной структурой биосферы. Биосфера состоит из живого и неживого компонентов. Совокупность всех живых организмов нашей планеты образует живое вещество биосферы. Основная масса живых организмов сосредоточена на границе трех геологических оболочек Земли: газообразной (атмосфера), жидкой (гидросфера) и твердой (литосфера). К неживым компонентам относится та часть атмосферы, литосферы и гидросферы, которая связана сложными процессами миграции веществ и энергии с живым веществом биосферы. Границы жизни на планете являются одновременно и границами биосферы. Таким образом, биосфера — часть геологических оболочек Земли, заселенная живыми организмами.

Термин «биосфера» ввела 1875 г. геолог Э.Зюсс. Однако широкое распространение этот термин получил лишь после того, как на исходе 20-х годов нашего века было развито учение о биосфере как об особой оболочке нашей планеты. Создатель этого учения — отечественный естествоиспытатель В.И.Вернадский. Он показал, что биосфера отличается от других сфер Земли тем, что в ее пределах проявляется геологическая деятельность всех живых организмов. Живые организмы, преобразуя солнечную энергию, являются мощной силой, влияющей на геологические процессы. Специфическая черта биосферы как особой оболочки Земли — непрерывно происходящий в ней круговорот веществ, регулируемый деятельностью живых организмов. Так как биосфера получает энергию извне — от Солнца, она является открытой системой. Начальный этап миграции веществ и энергии в биосфере — преобразование энергии солнечного излучения автотрофными организмами в процессе фотосинтеза. Поэтому, согласно учению В.И.Вернадского, живые организмы, обитающие на Земле, представляют собой сложную систему преобразования энергии солнечных лучей в энергию геохимических процессов. Живые организмы, регулируя круговорот веществ, служат мощным геологическим фактором, преобразующим поверхность нашей планеты.

Биомасса суши. На суше Земли от полюсов к экватору биомасса постепенно увеличивается. Наибольшее сгущение и многообразие растений имеет место во влажных тропических лесах. Число и разнообразие видов животных зависит от растительной массы и тоже увеличивается к экватору. Цепи питания, переплетаясь, образуют сложную сеть передачи химических элементов и энергии. Между организмами идет жесточайшая борьба за обладание пространством, пищей, светом, кислородом.

Биомасса почвы. Как среда жизни почва имеет ряд специфических особенностей: большую плотность, малую амплитуду колебаний температуры, она непрозрачна, бедна кислородом, содержит воду, в которой растворены минеральные вещества. Обитатели почвы представляют своеобразный биоценотический комплекс. В почве много бактерий (до 500 т/га), разлагающих органическое вещество грибов, в поверхностных слоях живут зеленые и сине-зеленые водоросли, обогащающие почву кислородом в процессе фотосинтеза. Толща почвы пронизана корнями высших растений, богата простейшими — амебами, инфузориями и др. В почве, кроме того, живут муравьи, клещи, кроты, сурки, суслики и др. животные.Все обитатели почвы производят большую почвообразовательную работу, участвуют в создании плодородия почвы. Многие почвенные организмы принимают участие в общем круговороте веществ.

Биомасса Мирового океана. Гидросфера Земли, или Мировой океан, занимает более 2/3 поверхности планеты. Вода обладает особыми свойствами, важными для жизни организмов. Ее высокая теплоемкость делает относительно равномерной температуру океанов и морей, смягчая крайние изменения температуры зимой и летом. Физические свойства и химический состав вод океана весьма постоянны и создают среду, благоприятную для жизни. На долю растений океана приходится около 1/3 фотосинтеза на всей планете. Взвешенные в воде одноклеточные водоросли и мельчайшие животные образуют планктон. Планктон имеет преимущественное значение в питании животного мира океана.

В океане, кроме планктона и свободноплавающих животных, много организмов, прикрепленных ко дну и ползающих по нему. Обитателей дна называют бентосом.

В Мировом океане живой биомассы в тысячу раз меньше, чем на суше. Во всех частях Мирового океана имеются микроорганизмы, разлагающие органические вещества до минеральных.

Функции живого вещества. Живое вещество выполняет в биосфере следующие биогеохимические функции: газовую — поглощает и выделяет газы; окислительно-восста-новительную — окисляет, например, углеводы до углекислого газа и восстанавливает его до углеводов; концентрационную — организмы-концентраторы накапливают в своих телах и скелетах азот, фосфор, кремний, кальций, магний. В результате выполнения этих функций живое вещество биосферы из минеральной основы создает природные воды и почвы, оно создало в прошлом и поддерживает в равновесном состоянии атмосферу. При участии живого вещества идет процесс выветривания, и горные породы включаются в геохимические процессы.

Газовая и окислительно-восстановительная функции живого вещества тесно связаны с процессами фотосинтеза и дыхания. В результате биосинтеза органических веществ автотрофными организмами было извлечено из древней атмосферы огромное количество углекислого газа. По мере увеличения биомассы зеленых растений изменялся газовый состав атмосферы — уменьшалось содержание углекислого газа и увеличивалась концентрация кислорода. Весь кислород атмосферы образован в результате процессов жизнедеятельности автотрофных организмов. Живое вещество качественно изменило газовый состав атмосферы —геологической оболочки Земли. В свою очередь, кислород используется организмами для процесса дыхания, в результате чего в атмосферу вновь поступает углекислый газ. Таким образом, живые организмы создали в прошлом и поддерживают миллионы лет атмосферу нашей планеты. Увеличение концентрации кислорода в атмосфере планеты повлияло на скорость и интенсивность окислительно-восстановительных реакций в литосфере.

Многие микроорганизмы непосредственно участвуют в окислении железа, что приводит к образованию осадочных железных руд, или восстанавливают сульфаты, образуя биогенные месторождения серы.

Несмотря на то что в состав живых организмов входят те же химические элементы, соединения которых образуют атмосферу, гидросферу и литосферу, организмы не повторяют полностью химический состав среды. Живое вещество, активно выполняя концентрационную функцию, выбирает из среды обитания те химические элементы и в том количестве, которые ему необходимы. Благодаря осуществлению концентрационной функции живые организмы создали многие осадочные породы, например залежи мела и известняка. Таким образом, живое вещество биосферы, выполняя геохимические функции (газовую, концентрационную, окислительно-восстановительную), создает и поддерживает компоненты биосферы.

БИЛЕТ№23

ВОПРОС 1.

Модификационная изменчивость. Разнообразие фенотипов, возникающих у организмов под влиянием условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может служить изменчивость генетически сходных (идентичных) особей. Многие виды растений, например картофель, обычно размножаются вегетативно, в этом случае все потомки обладают одинаковым генотипом. Многие растения существенно отличаются по высоте, кустистости, количеству и форме клубней и другим показателям. Причина этой очень широкой модификационной изменчивости состоит в разнообразном влиянии среды, которое испытывает каждый саженец картофеля. Модификационные изменения (модификации) не связаны с изменением генов. Однако модификации могут сильно влиять на их работу, а также на активность ферментов. Хорошо известно, что при низких температурах ферменты гораздо менее активны, что не может не влиять на рост растений и микроорганизмов, развитие животных. Следовательно, действие факторов среды очень существенно для протекания многих физиологических и формообразовательных процессов. Однако эти воздействия, как правило, не влияют на свойства генов, которые передаются в следующие поколения без принципиальных изменений .Именно поэтому модификации не наследуются. Это важное обобщение сделал крупный немецкий биолог А.Вейсман.

Модификационная изменчивость встречается у всех организмов, независимо от способа размножения, видовой принадлежности и разнообразия условий окружающей среды.

В некоторых случаях модификации не имеют приспособительного значения, а, напротив, представляют собой аномалии и даже уродства. Такие модификации получили название морозов. Морфозы представляют собой результат резкого отклонения индивидуального развития организма от нормального пути. Например, обработка личинок и куколок дрозофилы высокими температурами приводит к появлению большого количества мух с измененной формой крыльев и туловища.

Статистические закономерности модификацнонной изменчивости. Если мы измерим длину и ширину листьев, взятых с одного дерева, то увидим, что размеры их варьируются в довольно широких пределах. Эта изменчивость — результат разных условий развития листьев на ветвях дерева; генотип их одинаков. Если некоторое количество листьев расположить в порядке нарастания, или убывания признака то получится ряд изменчивости данного признака, который носит название вариационного ряда, слагающегося из отдельных вариант. Варианта, следовательно, есть единичное выражение развития признака. Если мы подсчитаем число отдельных вариант в вариационном ряду, то увидим, что частота встречаемости их неодинакова. Чаще всего встречаются средние члены вариационного ряда, а к обоим концам ряда частота встречаемости будет снижаться. Чем однообразнее условия развития, тем меньше выражена модификационная изменчивость, тем короче будет вариационный ряд. Чем разнообразнее условия среды, тем шире модификационная изменчивость. Размах вариации зависит и от генотипа.

Норма реакции. Итак, признаки развиваются в результате взаимодействия генотипа и среды. Один и тот же генотип может в разных условиях среды давать разное значение признака. Пределы, в которых возможно изменение признаков у данного генотипа, называют нормой реакции.

ВОПРОС 2.

Круговорот веществ – необходимое условие существования биосферы . Звенья биологического круговорота веществ:

1. создание растениями в процессе фотосинтеза органических веществ из неорганических (первичная продукция.)

2. превращение животными первичной продукции во вторичную (животную.)

3. разрушение первичной и вторичной продукции бактериями и грибами. Включение в биологический круговорот различных химических элементов (кислород, углерод, азот. ) и веществ (воды), переход их из внешней среды в организмы, перемещение по цепям питания, возврат во внешнею среду. Многократное использование веществ в круговороте.

Постоянный приток энергии в биосферу – необходимое условие круговорота веществ. Солнце – основной источник энергии, используемый в круговороте веществ. Роль растений в поглощении и использовании световой энергии солнца, в преобразовании ее в энергию химических связей. Использование животными, грибами, значительной частью бактерий органических веществ и заключенной в них энергии. Освобождение энергии, заключенной в органических веществах, в процессе дыхания (окисления), брожение и гниения.

Круговорот минеральных элементов питания .Биогенная миграция атомов –круговорот в природе атомов химических элементов.В биосфере вода и элементы питания совершают непрерывный круговорот: из водоема или почвы в растение, далее в животное, поедающее это растение, обратно в водоем или почву, пройдя через редуценты, и снова в растение.

Живым организмам необходимы в сравнительно больших количествах шесть элементов: углерод, водород, кислород, азот, фосфор и сера. Углерод поступает в сообщество главным образом в результате поглощения растениями из воздуха двуокиси углерода и использования ее в процессе фотосинтеза для создания сложных органических веществ. Затем этот углерод может передаваться растительноядным и плотоядным животным, однако в конечном итоге большая часть содержащегося в пище углерода возвращается в воздух в виде двуокиси углерода, образующейся в процессе дыхания.

Другие элементы питания, такие, как сера и фосфор, содержатся в горных породах в виде неорганических соединений. В результате эрозии и выветривания эти вещества поступают в почву, откуда они поглощаются растениями и таким образом попадают в сообщество организмов. В конечном итоге организмы-редуценты возвращают их в почву. Неорганические вещества могут совершать круговорот в пределах наземной экосистемы или же смываются дождями в реки, озера и океаны. Здесь их поглощают водные растения, и тогда они становятся на некоторое время частью водной пищевой сети, но рано или поздно они оседают на морское дно и в конце концов превращаются в горную породу. Это медленное, но явно одностороннее перемещение биогенных элементов из почвы на морское дно может быть ускорено эрозией почвы. Поскольку образование почвы из материнской породы протекает очень медленно, возмещение элементов питания происходит не так быстро, как их потери; поэтому продуктивность экосистемы, получающей элементы питания из почвы, снижается.

Это интересно:  Право наследования пенсионных накоплений умершего 2019 год

Азот и кислород, необходимые организмам, в изобилии содержатся в воздухе. Однако, хотя содержание газообразного азота в атмосфере достигает 78%, большинство зеленых растений не может непосредственно использовать его в этой форме. Азот сначала должен быть «связан» (переведен в такую форму, в которой растения могли бы его поглощать); это делают некоторые бактерии, обитающие в почве или в водоемах. Таким образом, растения добывают азот из почвы или из воды. В конце концов редуценты вновь переводят азот в газообразную форму и возвращают его в атмосферу. Следовательно, круговорот азота сочетает в себе черты «атмосферного» круговорота, подобного углеродному, и «осадочного», подобного круговоротам неорганических компонентов почвы.

Круговороты элементов питания иногда протекают быстро, как в степях, где большая часть растительности ежегодно отмирает. Редуценты разлагают мертвые растения, в результате чего многие из содержащихся в них элементов питания становятся доступными новым растениям в следующем году. В других случаях элементы питания остаются связанными в мертвых телах организмов на протяжении миллионов лет. Например, остатки морских организмов, опустившись на дно океана, образовали там нефтеносные отложения или другие осадочные породы. Прошли миллионы лет, прежде чем мы начали добывать эти вещества в качестве ископаемого топлива или же пока движения земной коры не вывели их на поверхность в составе пород, которые, постепенно подвергаясь эрозии, высвобождают заключенные в них элементы питания.

Превращение энергии в биосфере.Солнце служит изначальным источником энергии почти для всего живого на Земле. Энергия солнечного света напрямую усваивается растениями, запасается в химических связях органических соединений, а затем перераспределяется через пищевые отношения в биоценозах. Высвобождение заключенной в пище энергии происходит в процессе дыхания. Для дыхания необходим кислород, а в результате этого процесса образуется энергия, которая используется организмом для своей жизнедеятельности. Разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы и т.д.). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы продуцирования органического вещества. Содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. Вследствие непрерывно происходящих потерь энергии необходимо, чтобы она столь же непрерывно поступала в экосистемы в виде энергии солнца.

БИЛЕТ№24

ВОПРОС 1.

Мутации — это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, их части или отдельные гены. Они могут быть полезны, вредны и нейтральны для организмов.

Хромосомные мутации — это перестройки хромосом. Структурные изменения хромосом Многие из хромосомных мутаций доступны изучению под микроскопом. Пути изменения структуры хромосом разнообразны. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т.д. Хромосомные мутации — результат отклонений в нормальном течении процессов клеточного деления. Основная причина возникновения различных хромосомных мутаций — разрывы хромосом и хроматид и воссоединения в новых сочетаниях.

Генные мутации. Генные, или точечные, мутации — наиболее часто встречающийся класс мутационных изменений. Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Они приводят к тому, что мутантный ген перестает работать, и тогда либо не образуются соответствующие РНК и белок, либо синтезируется белок с измененными свойствами, что проявляется в изменении каких-либо признаков организма. Вследствие генных мутаций образуются новые аллели. Это имеет важное эволюционное значение.

Генные мутации следует рассматривать как результат «ошибок» возникающих в процессе удвоения молекул ДНК. Изучение мутационного процесса показало, что изменяться (мутировать) могут все гены, контролирующее развитие любого признака организма. Большинство генных мутаций вредно для организма, но некоторые из них в определенных условиях жизни могут становиться полезными.

Генеративные и соматические мутации. Мутации могут возникать в любых клетках организма. Те из них, которые возникают в клетках половых зачатков и зрелых половых клетках, получили название генеративных. Мутации, возникающие во всех клетках тела, за исключением половых, называют соматическими.

Хотя механизмы возникновения обоих типов мутаций могут быть подобны, их вклад в наследование признаков и, следовательно, эволюционное значение совершенно различны. Соматические мутации проявляются мозаично, т.е. часть клеток данной ткани или органа отличается от остальных по каким-либо свойствам. Чем раньше в ходе индивидуального развития возникает соматическая мутация, тем большим оказывается участок тела, несущий мутантный признак (измененную окраску, форму или другое свойство). У растений, использующих бесполое или вегетативное размножение, соматические мутации могут иметь важное значение, особенно для селекции, поскольку вновь возникшая соматическая мутация может быть очень широко размножена и в этом отношении она становится подобной генеративной мутации. В ряде случаев новые сорта плодовых и ягодных растений были получены на основе использования соматических мутаций.

Основные положения мутационной теории. Основные положения мутационной теории формулируются следующим образом:

— мутации — это дискретные изменения наследственного материала;

— мутации — редкие события;

— мутации могут устойчиво передаваться из поколения в поколение;

— мутации возникают не направленно (спонтанно) и, в отличие от модификаций, не образуют непрерывных рядов изменчивости;

— мутации могут быть вредными, полезными и нейтральными.

ВОПРОС 2.

Загрязнение биосферы и здоровье человека.В настоящее время хозяйственная деятельность человека все чаще становится основным источником загрязнения биосферы. В природную среду во все больших количествах попадают газообразные, жидкие и твердые отходы производств. Различные химические вещества, находящиеся в отходах, попадая в почву, воздух или воду, переходят по экологическим звеньям из одной цепи в другую, попадая в конце концов в организм человека.

Неумеренное применение пестицидов и минеральных удобрений привело к тому, что они в большом количестве оказались в грунтовых водах, почве и явились причиной загрязнения продуктов питания. Нарастание применения пестицидов совпадает с учащением легочных, кишечных, нервных заболеваний и у детей, и у взрослых. Научно-технический прогресс стал причиной шумового загрязнения среды. Как показали исследования, неслышимые звуки также могут оказать вредное воздействие на здоровье человека. Так, инфразвуки особое влияние оказывают на психическую сферу человека: поражаются все виды интеллектуальной деятельности, ухудшается настроение, иногда появляется ощущение растерянности, тревоги, испуга, страха, а при высокой интенсивности — чувство слабости, как после сильного нервного потрясения. Шум коварен, его вредное воздействие на организм совершается незримо, незаметно. Нарушения в организме обнаруживаются не сразу. К тому же организм человека против шума практически беззащитен. В настоящее время врачи говорят о шумовой болезни, развивающейся в результате воздействия шума с преимущественным поражением слуха и нервной системы.

Стратегия развития промышленности и энергетики и борьба с загрязнениями. Стратегическое направление развития промышленности — переход на новые вещества и технологии, позволяющие уменьшить выбросы загрязнителей. Общее правило заключается в том, что предотвратить загрязнение легче, чем ликвидировать его последствия. Для этого в промышленности применяются системы очистки сточных вод и газоулавливающие установки, на выхлопных трубах автомобилей устанавливаются специальные фильтры. Уменьшению загрязнения среды способствует переход на новые, более «чистые» источники энергии. Например, сжигание на теплоэлектростанциях природного газа вместо угля позволяет резко снизить выбросы диоксида серы. Для осуществления этих мер на развитие новых технологий требуется направлять значительные денежные средства. Этому способствует принятие специальных законов, требующих уменьшить загрязнение. Один из наиболее строгих законов об охране атмосферы, принятый в США, позволил существенно уменьшить выбросы промышленных предприятий и загрязнение воздуха в городах. Усовершенствование системы очистки стоков привело к постепенному очищению сильно загрязненных, безжизненных водоемов в Европе.

Во многих случаях загрязнение атмосферы и водоемов затрагивает интересы нескольких или даже всех стран. Для уменьшения его последствий необходимо международное сотрудничество. Пример успеха такого сотрудничества — соглашение о снижении производства хлорфторуглеродов, в котором участвуют большинство государств мира, в том числе и СНГ. Стратегия развития сельского хозяйства. В настоящее время объем мировой сельскохозяйственной продукции растет быстрее, чем население. Однако этот рост сопровождается существенными издержками: сведением лесов для расширения посевных площадей, засолением и эрозией почв, загрязнением среды удобрениями и ядохимикатами. Стратегическое направление в развитии сельского хозяйства — повышение урожайности, что позволит обеспечить растущее население продовольствием при сохранении прежних посевных площадей. Путей повышения урожайности несколько. Это, например, расширение орошения. При недостатке водных ресурсов необходимо внедрять капельное орошение, при котором вода не расходуется зря, а подается прямо к корням растений по трубам. Другой путь — выведение новых сортов растений. Именно получение новых сортов зерновых, более продуктивных и устойчивых к болезням, дало в последние десятилетия основной прирост сельскохозяйственной продукции (этот успех селекционеров был назван «зеленой революцией»). Урожайность повышается при правильных севооборотах, а также при переходе от монокультуры (выращивания одного вида) к смешанному культивированию (например, совместному выращиванию зерновых и бобовых). Наконец, важный путь увеличения урожайности — создание интегрированной системы защиты растений, которая наряду с химическими методами борьбы с вредителями включает правильные севообороты, приемы обработки почвы, различные биологические методы.

Сохранение природных сообществ. Сохранение природного разнообразия — основа благосостояния человечества в будущем. Разнообразие природных сообществ обеспечивает устойчивость в функционировании биосферы. Сохранение природных сообществ важно не только для материального благополучия, но и просто для полноценного существования человека.

Психогенетика: сцепленное наследование, генетика пола

1. Явление сцепленного наследования. 2

1.1. Группы сцепления. 2

1.2. Сцепленное наследование признаков. 2

1.3. Механизм сцепления. 3

1.4. Кроссинговер. 4

1.4. Группы сцепления и карты хромосом у человека. 6

2. Генетика пола. 7

2.1. Генетические механизмы формирования пола. 8

2.2. Наследование признаков, сцепленных с полом. 10

3. Заключение. 13

4. Список использованной литературы. 14

1. Явление сцепленного наследования.

Явление сцепленного наследования изучено Т. Морганом, который

установил, что материальной основой сцепления является хромосома

(хромосомная теория наследственности). Суть сцепленного наследования как

нарушение сцепления, происходящего в результате перекреста хромосом, или

кроссинговера, необходимо обратить внимание на биологический смысл этого

феномена. При перекресте хромосом происходит обмен идентичными участками

между гомологичными хромосомами, а значит, возникают новые комбинации генов

(как аллельных, так и неаллельных). Обсуждая вопрос о природе изменчивости

1 Группы сцепления.

Число генов у каждого организма гораздо больше числа хромосом.

Следовательно, в одной хромосоме расположено много генов. Ученые

установили, что гены, расположенные в одной хромосоме, наследуются

совместно, или сцеплено. Группы генов, расположенные в одной хромосоме,

называют группами сцепления. Сцепленные гены расположены в хромосоме в

линейном порядке. Число групп сцепления у генетически хорошо изученных

объектов равно числу пар хромосом, т.е. гаплоидному числу хромосом. У

человека 23 пары хромосом и 23 группы сцепления.

2 Сцепленное наследование признаков.

Наряду с признаками, наследуемыми независимо, обнаружены признаки,

наследуемые совместно (сцепленно). Экспериментальное наследование этого

хромосомную локализацию генов и легло в основу хромосомной теории

наследственности. В работах на плодовой мушке Drosophila melanogaster было

установлено, что гены по признаку совместной их передачи потомкам

подразделяются на 4 группы. Число таких групп сцепления равно количеству

хромосом в гаплоидном наборе. Можно заключить, что развитие признаков,

которые наследуются сцепленно, контролируется генами одной хромосомы. Этот

вывод обосновывается также данными следующих наблюдений. Скрещивание серой

мухи (В) с нормальными крыльями (V) и черной мухи (в) с зачаточными

крыльями (v) дает в 1-ом поколении серых гибридов с нормальными крыльями

При скрещивании самца-гибрида 1-го поколения с черной самкой с зачаточными

крыльями [pic]рождаются особи 2 видов, аналогичных исходным родительским

формам, причем в равном количестве.

Полученные в проведенных скрещиваниях данные нельзя объяснить

независимым наследованием признаков. Рассматриваемые совместно результаты

обоих скрещиваний убеждают в том, что развитие альтернативных признаков

контролируется различными генами, и сцепленное наследование этих признаков

объясняется локализацией генов в одной хромосоме.

Основные положения хромосомной теории наследственности заключаются в

— гены располагаются в хромосомах; различные хромосомы содержат

неодинаковое число генов каждой из негомологичных хромосом уникален.

— аллельные гены занимают определенные и идентичные локусы гомологичных

— в хромосоме гены располагаются в определенной последовательности по ее

длине в линейном порядке.

— гены одной хромосомы образуют группу сцепления, благодаря чему имеет

место сцепленное наследование некоторых признаков; сила сцепления находится

в обратной зависимости от расстояния между генами.

— каждый биологический вид характеризуется специфичным набором хромосом

1.3. Механизм сцепления.

Гены, локализованные в одной хромосоме, называют группой сцепления.

Число групп сцепления соответствует гаплоидному набору хромосом. Если две

сцепленные пары генов находятся в одной гомологичной паре хромосом, то

генотип запишется [pic].

Проведем скрещивание двух организмов различающихся по двум парам

Скрещивая гибриды 1-го поколения, получим

Гены, находящиеся в одной паре гомологичных хромосом, наследуются

вместе и не расходятся в потомстве, так как при гаметогенезе они

обязательно попадают в одну гамету. Совместное наследование генов,

ограничивающее свободное их комбинирование называют сцеплением генов. Для

наследования сцепленных генов, находящихся в половых хромосомах, имеет

значение направление скрещивания.

Нужно иметь ввиду, что кроме истинного сцепления, могут встречаться

явления, внешне сходные со сцеплением, нот отличные от него по природе: это

так называемое ложное, межхромосомное сцепление, возникающее из-за

нарушения свободного комбинирования негомологичных хромосом в мейозе. Такие

случаи наблюдались в скрещиваниях линий лабораторных мышей и дрожжей.

Предполагается, что такое сцепление между генами разных хромосом обязано

тенденции последних к неслучайному расхождению в мейозе. Сцепленное

наследование генов негомологичных хромосом обнаруживается также при

межвидовых скрещиваниях в тех случаях, когда родительская комбинация

хромосом оказывается физиологически совместимой. Ложное сцепление следует

отличать от истинного сцепления генов, находящихся в одной хромосоме — в

одной группе сцепления.

Если гены находятся в одной хромосоме и всегда передаются вместе,

говорят о полном сцеплении. Чаще встречается неполное сцепление. Нарушения

сцепления объясняется кроссинговером, который является обменом идентичных

участков гомологичных хромосом, в которых расположены аллельные гены.

Запись [pic] означает, что в одной аутосоме находится доминантный ген 1-ой

пары альтернативных признаков и рецессивный ген 2-ой. А в другой аутосоме

наоборот. В половых хромосомах [pic] y-хромосома не несет этих генов. Кроме

сцепления генов, здесь идет сцепление с полом.

Кроссовер — гамета, которая претерпела процесс кроссинговера. Частота

вступления генов в кроссинговер прямо пропорциональна расстоянию между

ними, поэтому число гамет с новыми комбинированными формами будет зависеть

от расстояния между генами. Расстояние вычисляется в морганидах, но если

речь идет о кроссинговере, то расстояние вычисляется в процентах

Одной морганиде соответствует 1% образования гамет, в которых

гомологичные хромосомы обмениваются своими участками. 50М — максимальное

расстояние между генами, на котором возможен кроссинговер. Если гены

расположены друг от друга на расстоянии, большем 50М, то наблюдается

явление независимого наследования. На основании частот кроссинговера

строится карта группы сцепления.

Кроссинговер может происходить не только во время мейоза, но и митоза,

тогда его называют митотическим кроссинговером. Частота митотического

кроссинговера значительно ниже мейотического. Тем не менее, его также можно

использовать для генетического картирования.

Мейотический кроссинговер осуществляется после того, как гомологичные

хромосомы в зиготной стадии профазы I соединяются в пары, образуя

биваленты. В профазе I каждая хромосома представлена двумя сестринскими

хроматидами, и перекрест происходит между хроматидами.

Приняв положения, что 1) генов в хромосоме может быть много, 2) гены

расположены в хромосоме в линейном порядке, 3) каждая аллельная пара

занимает определенные и идентичные локусы в гомологичных хромосомах, Т.

Морган допустил, что перекрест между хроматидами гомологичных хромосом

может происходить одновременно в нескольких точках кроссинговер,

происходящий лишь в одном месте, называют одиночным кроссинговером, в двух

точках одновременно — двойным, в трех — тройным и т.д., т.е. кроссинговер

может быть множественным.

Пусть, например, в гомологичной паре хромосом содержатся три пары

аллелей в гетерозиготном состоянии [pic]. Тогда перекрест, произошедший

только в участке между генами А и В или между В и С, будет одинарным. В

результате одинарного перекреста возникают в каждом случае только две

кроссоверные хромосомы aBC и Abc или Abc и aBC.

Каждый двойной кроссинговер возникает благодаря двум независимым

одинарным разрывам в двух точках. Таким образом, двойные кроссинговеры

сокращают регистрируемое расстояние между генами.

Вместе с тем между обменами на соседних участках хромосом существует

взаимовлияние, названное интерференцией. Такое взаимовлияние можно выразить

количественно. Для этого составляют реально наблюдаемую частоту двойных

кроссинговеров с частотой, теоретически ожидаемой на основе предположения о

том, что обмены на соседних участках происходят независимо друг от друга.

Степень и характер интерференции измеряется величиной коинциденции (С).

Коинциденцию оценивают как частное от деления реально наблюдаемой частоты

двойных кроссоверов на теоретически ожидаемую частоту двойных кроссоверов.

Последнюю величину получают, перемножая частоты кроссинговера на соседних

Величину интерференции (I) определяют по формуле I=1-C. Если С1, то интерференция отрицательная, т.е.

один обмен как бы стимулирует дополнительные обмены на соседних участках.

В действительности существует только положительная интерференция при

реципрокной рекомбинации — кроссинговере, а кажущееся неслучайным

совпадение двух и более обменов, характерное для очень коротких расстояний

— результат нереципрокных событий при рекомбинации.

Это интересно:  Наследование по завещанию имеет место если 2019 год

Таким образом, при карплеровании генов в группах сцепления на основе

изучения частот рекомбинации необходимо учитывать две противоположные

тенденции. Двойные обмены “сокращают” расстояния между генами, и

интерференция препятствует множественным обменам, вероятность которых

увеличивается с расстоянием.

В обобщенном виде зависимость частоты рекомбинации от реального

расстояния с учетом множественных обменов описывает функция Дж. Холдэйна

где rf — картирующая функция (в нашем случае — это частота учитываемых

кроссинговеров), d — реальное расстояние, на котором происходят обмены, e —

основание натурального логарифма.

При изучении множественных обменов и интерференции между ними

используют тетрадный анализ. Для этого рассматривают тригибридное

скрещивание (ABC x abc) по сцепленным генам. Учитывая, что кроссинговер

происходит на стадии 4-х хроматид, возможны три типа двойных обменов. Это

двойные двухроматидные обмены, двойные треххроматидные обмены и двойные

четыреххроматидные обмены только между несестринскими хроматидами,

последствия которых генетически различимы.

1.4 Группы сцепления и карты хромосом у человека.

Генетические карты аутосом человека.

У человека 23 пары хромосом. Это указывает на наличие у него 23 групп

сцеплений, для каждой из которых надо построить линейные карты

взаиморасположения генов. Хорошо установлены группы сцепления, касающиеся

трех пар аутосом. Одна группа сцепления несет в себе локус 1, где

локализованы аллели групп АВО и локус, содержащий дефекты локтей и коленной

чашечки (N). Расстояние между этими генами равно 10% кроссинговера. Вторая

группа сцепления в аутосоме содержит локус Rh, где локализованы аллели

и локус эллиптоцитоза (El) доминантной мутации, вызывающей овальную форму

эритроцитов. Расстояние между этими локусами равно 3%. Третья аутосома

имеет в себе локусы группы крови Лютеран (Lu) и локус секреции (Se). Группы

крови Лютеран содержат систему из двух аллелей Lua и Lub. Аллели —

секреторы (se) обуславливают выделение в разных тканях организма, и, в

частности в слюне, растворимых в воде антигенов АВО. Люди с рецессивными

аллелями этого локуса (H) не выделяют водорастворимых антигенов. Действие

аллеля касается групп крови с антигеном АВО и антигеном групп крови

Лютеран. Расстояние между локусами Lu и Se равно 9%.

Четвертая генетическая карта касается Х-хромосомы.

Генетические карты Х-хромосомы человека.

Начальный период в составлении карт хромосом человека очень

знаменателен. Будущая медицина и антропология будут связаны с

использованием этих данных. Для борьбы с врожденными болезнями и многими

отрицательными биологическими сторонами человека раскрытие генетического

строения его 23 пар групп сцепления с их точными линейными картами генов и

знание тонкого строения отдельных генов сыграют величайшее значение.

2. Генетика пола.

Пол — совокупность признаков, по которым производится специфическое

разделение особей или клеток, основанное на морфологических и

физиологических особенностях, позволяющее осуществлять в процессе полового

размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится

специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток,

называется первичными половыми признаками. Это гонады (яичники или

семенники), их выводные протоки, добавочные железы полового аппарата,

копулятивные органы. Все другие признаки, по которым один пол отличается од

другого, получили название вторичных половых признаков. К ним относят:

характер волосяного покрова, наличие и развитие молочных желез, строение

скелета, тип развития подкожной жировой клетчатки, строение трубчатых

2.1. Генетические механизмы формирования пола.

Начало изучению генотипического определения пола было положено

открытием американскими цитологами у насекомых различия в форме, а иногда и

в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и

классическими опытами немецкого генетика Корренса по скрещиванию

однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа

Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с

самкой хромосом, а в седьмой паре одна хромосома такая же, как

соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио,

или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые

хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая —

Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы

аутосомами. Таким образом, хромосомная формула у самки названного клопа

запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и

существует в принципе тот же аппарат для определения пола, однако

гетерозиготны в отношении реализаторов пола не мужские, а женские

организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а

особи женского пола — ZO или ZW. ZZ-ZW тип определения пола наблюдается у

бабочек, птиц, ZZ-ZO — ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый

гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов

нет половых хромосом: самки — это диплоидные особи, а самцы (трутни) —

гаплоидные. Самки развиваются из оплодотворенных яиц, а из

неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При

гаметогенезе наблюдается типичное менделевское расщепление по половым

хромосомам. Каждая яйцеклетка содержит одну Х-хромосому, а другая половина

— одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит

яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него

образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с

генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина

— Y-хромосому. У человека генотипический пол данного индивидуума

определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается

в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает

в покоящемся состоянии в виде плотного темно-окрашенного тельца,

называемого тельцем Барра (факультативный гетерохроматин). Число телец

Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском

организме их нет вовсе, у женщин (ХХ) — одно. У человека Y-хромосома

является генетически инертной, так как в ней очень мало генов.

Однако влияние Y-хромосомы на детерминацию пола у человека очень

сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же,

как и у дрозофилы, однако у человека особь кариотипом 44A+XD оказалась

женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты

развития, но все же пол определялся наличием или отсутствием y-хромосомы.

Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом

XXXY2A — бесплодных умственно отстающих мужчин. Такие генотипы возникают в

результате нерасхождения половых хромосом, что приводит к нарушению

развития (например, синдром Клайнфельтера (XXY)). Нерасхождение хромосом

изучаются как в мейозе, так и в митозе. Нерасхождение может быть следствием

физического сцепления Х-хромосом, в таком случае Нерасхождение имеет место

Вид половых хромосом человека в метафазе митоза.

Всем млекопитающим мужского пола, включая человека, свойственен так

называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-

хромосому. Единственной функцией его считается дифференцировка гонад.

Вторичные половые признаки развиваются под влиянием стероидных гормонов,

вырабатываемых гонадами. Развитие мужских вторичных половых признаков

контролирует тестостерон, воздействующий на все клетки организма, включая

клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор

тестостерона, приводит к синдрому тестикумерной фелинизации особей XY.

Клетки-мутанты не чувствительны в действию тестостерона, в результате чего

взрослый организм приобретает черты, характерные для женского пола. При

этом внутренние половые органы оказываются недоразвитыми и такие особи

полностью стерильные. Таким образом, в определении и дифференцировке пола

млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины — только

одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у

обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью

инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано

выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития,

соответствующей времени имплантации. При этом в разных клетках отцовская и

материнская Х-хромосомы выключаются случайно. Состояние инактивации данной

Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские

особи, гетерозиготные по генам половых хромосом, представляют собой мозаики

(пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак,

наследуемый по принципу обратного (анализирующего) скрещивания.

Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с

рецессивной гомозиготой, представленной гомогаметным полом (XX). В

результате в природе обнаруживается наследственная дифференцировка

организмов на мужской и женский пол и устойчивое сокращение во всех

поколениях количественного равенства полов.

2.2. Наследование признаков, сцепленных с полом.

Морган и его сотрудники заметили, что наследование окраски глаз у

дрозофилы зависит от пола родительских особей, несущих альтернативные

аллели. Красная окраска глаз доминирует над белой. При скрещивании

красноглазого самца с белоглазой самкой в F1, получали равное число

красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого

самца с красноглазой самкой в F1 были получены в равном числе красноглазые

самцы и самки. При скрещивании этих мух F1, между собой были получены

красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной

белоглазой самки. Тот факт, что у самцов частота проявления рецессивного

признака была выше, чем у самок, наводил на мысль, что рецессивный аллель,

определяющий белоглазость, находится в Х — хромосоме, а Y — хромосома

лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил

исходного белоглазого самца с красноглазой самкой из F1. В потомстве были

получены красноглазые и белоглазые самцы и самки. Из этого Морган

справедливо заключил, что только Х — хромосома несет ген окраски глаз. В Y

— хромосоме соответствующего локуса вообще нет. Это явление известно под

названием наследования, сцепленного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В

Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога.

Поэтому у особей мужского пола признаки, определяемые генами этого участка,

проявляются даже в том случае, если они рецессивны. Эта особая форма

сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков, как в аутосоме, так и в Х- b Y-хромосоме

наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том

числе гемофилия, дальтонизм (цветовая слепота), мускульная дистрофия,

потемнение эмали зубов, одна из форм агаммглобулинемии и другие.

Наследование таких признаков отклоняется от закономерностей, установленных

Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при

этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери.

Наследование, при котором сыновья наследуют признак матери, а дочери —

признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В

основе появления этих дефектов зрения лежит действие ряда генов. Красно-

зеленая слепота обычно называется дальтонизмом. Еще задолго до появления

генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота

наследуется согласно вполне закономерным правилам. Так, если женщина,

страдающая цветовой слепотой, выходит замуж за мужчину с нормальным

зрением, то у их детей наблюдается своеобразная картина перекрестного

наследования. Все дочери от такого брака получат признак отца, т.е. они

имеют нормальное зрение, а все сыновья, получая признак матери, страдают

цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

В том же случае, когда наоборот, отец является дальтоником, а мать

имеет нормальное зрение, все дети оказываются нормальными. В отдельных

браках, где мать и отец обладают нормальным зрением, половина сыновей может

оказаться пораженными цветовой слепотой. В основном наличие цветовой

слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого

признака, предположив, что он локализовал в Х-хромосоме и что у человека

гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в

браке гомозиготной нормальной женщины (Ха Ха) с мужчиной дальтоником (Хаy)

все дети рождаются нормальными. Однако при этом, все дочери становятся

скрытыми носителями дальтонизма, что может проявиться в последующих

Другим примером наследования сцепленного с полом, может послужить

рецессивный полулетальный ген, вызывающий несвертываемость крови на воздухе

— гемофилию. Это заболевание появляется почти исключительно только у

мальчиков. При гемофилии нарушается образование фактора VIII, ускоряющего

свертывание крови. Ген, детерминирующий синтез фактора VIII, находится в

участке Х-хромосомы, не доминантным нормальным и рецессивным мутантным.

Возможны следующие генотипы и фенотипы:

|Хн Хн |Нормальная женщина |

|Хн Хn |Нормальная женщина (носитель) |

|Хнy |Нормальный мужчина |

|Хny |Мужчина гемофилик |

В гомозиготном состоянии у женщин ген гемофилии летален.

Особей женского пола, гетерозиготных по любому из сцепленных с полом

признаков, называют носителями соответствующего рецессивного гена. Они

фенотипически нормальны, но половина их гамет несет рецессивный ген.

Несмотря на наличие у отца нормального гена, сыновья матерей-носителей с

вероятностью 50% будут страдать гемофилией.

Один из наиболее хорошо документированных примеров наследования

гемофилии мы находим в родословной потомков английской королевы Виктории.

Предполагают, что ген гемофилии возник в результате мутации у самой

королевы Виктории или у одного из ее родителей. Среди унаследовавших это

врожденное заболевание — цесаревич Алексей, сын последнего русского царя

Николая II. Мать цесаревича, царица Александра Федоровна (Алиса, рис.2),

получила от своей бабушки королевы Виктории ген гемофилии и передала его в

четвертом поколении бывшему наследнику царского престола. На рис.2

показано, как этот ген передавался ее потомкам.

Один из сцепленных с полом рецессивных генов вызывает особый тип

мышечной дистрофии (тип Дюмена). Эта дистрофия проявляется в раннем детстве

и постепенно ведет к инвалидности и смерти ранее 20-летнего возраста.

Потому мужчины с дистрофией Дюмена не имеют потомства, а женщины

гетерозиготные по гену этого заболевания, вполне нормальны.

Среди доминантных признаков, связанных с Х-хромосомой, можно указать на

ген, который вызывает недостаточность органического фосфора в крови. В

результате, при наличии этого гена, часто развивается рахит, устойчивый к

лечению обычными дозами витамина А. В этом случае картина сцепленного с

полом наследования заметно отличается от того хода передачи по поколениям,

который был описан для рецессивных болезней. В браках девяти больных женщин

со здоровыми мужчинами среди детей была половина больных девочек и половина

мальчиков. Здесь, в соответствии с характером наследование доминантного

гена, в Х-хромосомах произошло расщепление в отношении 1:1:1:1.

Другим примером доминантного гена, локализованного в Х-хромосоме

человека, может послужить ген, вызывающий дефект зубов, приводящий к

потемнению эмали зубов.

Так как гетерогаметный пол гемизиготен по сцепленным с полом генам, то

эти гены всегда проявляются в их фенотипе, даже если они рецессивны.

Большинство генов, имеющихся в Х-хромосоме, в Y-хромосоме отсутствует,

однако определенную генетическую информацию она все-таки несет. Различают

два типа такой информации: во-первых, содержащуюся в генах, присутствующих

только в Y-хромосоме, и, во-вторых, в генах, присутствующих как в Y-, так и

в Х-хромосоме (гемфрагический диатез).

Y-хромосома передается от отца всем его сыновьям, и только им.

Следовательно, для генов, содержащихся только в Y-хромосоме, характерно

голандрическое наследование, т.е. они передаются от отца к сыну и

проявляются у мужского пола.

У человека в Y-хромосоме содержатся по крайней мере, три гена, один из

которых необходим для дифференциации семенников, второй требуется для

проявления антигена гистосовместимости, а третий оказывает влияние на

размер зубов. Y-хромосома имеет немного признаков, среди которых есть

патологические. Патологические признаки наследуются по параллельной схеме

наследования (100%-ое проявление по мужской линии).

гипертрихоз (оволосенение козелка ушной раковины в зрелом возрасте);

наличие перепонок на нижних конечностях;

ихтиоз (чешуйчатость и пятнистое утолщение кожи).

Таким образом, генетика занимает важное место в жизни человека. Именно

она объясняет механизмы наследования признаков человека, как

патологических, так и положительных. Так, пол человека — это менделирующий

признак, наследуемый по принципу обратного скрещивания.

У женщин пол гетерогаметен (XY), у мужчин гомогаметен. Среди признаков,

подчиняющихся законам Г. Менделя, существуют признаки наследуемые

сцепленно. Однако сцепление часто бывает неполным, причина тому

кроссинговер, который имеет важное биологическое значение — лежит в основе

4. Список использованной литературы.

1. Ф. Антала, Дж. Кайгер, Современная генетика, М., “Мир”, 1999г., Т.1.

2. С.Г. Инге-Вечтомов, Генетика с основами селекции, М., “Высшая школа”,

3. Н.П. Дубинин, Общая генетика, М., “Наука”, 1970г.

4. БМЭ, Москва, “Советская энциклопедия”, 1962г., Т.25.

5. Н. Грин, Биология, М., “Мир”, 1993г.

6. А.П. Пеков, Биология и общая генетика, М., Издательство Российского

универститета дружбы народов, 1994г.

7. М.Е. Лобашев, Генетика, Ленинград, Издательство Ленинградского

8. В.Н. Ярыгин, Биология, М., “Медицина”, 1985г.

9. Ф. Кибернштерн, Гены и генетика, М., “Параграф”, 1995г.

10. В.П. Балашов, Т.Н. Шеворокова, Задачник по медицинской генетике,

Саранск, Издательство Мордовского университета, 1998г.

11. Общая биология, под ред. Д.К. Беляева, Г.М. Дымшица, А.О. Рувинского,

М. «Просвещение», 1999г.

12. М. Дженкинс, 101 ключевая идея: ГЕНЕТИКА, М. 2002г.

Статья написана по материалам сайтов: infopedia.su, www.on-lan.ru.

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector