+7 (499) 938-69-47  Москва

+7 (812) 467-45-73  Санкт-Петербург

8 (800) 511-49-68  Остальные регионы

Бесплатная консультация с юристом!

Явление сцепленного наследования генов 2019 год

Гены, расположенные в одной хромосоме, представляют собой группу сцепления. Сцепление генов — это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Сцепление генов, расположенных в одной хромосоме, может быть полным или неполным. Полное сцепление: Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость — над зачаточными крыльями. Серое тело — А, черное тело а; длиннокрылые — В, зачаточные крылья — в. При спермиогенезе в период мейоза гомологичные хромосомы расходятся в разные половые клетки. 1) АА//АВ*ав//ав=4АВ//ав; 2) АВ//ав*АВ//ав=АВ//АВ, АВ//ав, ав//АВ, ав//ав. Если гены наход в аутосомах, то при полном сцеплении в F1 будет единообразие по фенотипу, а в F2 – 3:1, по скольким бы признакам не различались родители, т.к. изучается одна пара хромосом.

54. Явление неполного сцепления в наследовании признаков

В результате скрещивания потомки имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков — сцепление неполное. В – серое, в – чёрное, V – нормальные, v — зачаточные. Bv||Bv*bV||bV=Bv||bV; самок из первого поколения скрестили с самцами анализаторами: BV//bV*bv//bv=Bv//bv,bV//bv – не кроссоверное. Bv//bV*bv//bv=2bv//bv, 2BV//bv – кросоверное. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером. Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами. Количество появления новых форм зависит от частоты перекреста, которая определяется по следующей формуле: Частота перекрёста = (Число кроссоверных форм)·100/ Общее число потомков. За единицу измерения перекреста принята его величина, равная 1 %. Ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста меньше.

55. Карты хромосом. Пример их построения

Карта хромосом — план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный — строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Явление сцепленного наследования

2. Явление сцепленного наследования

Независимое распределение наследственных факторов (второй закон Менделя) основано на том, что гены, относящиеся к разным аллелям, размещены в разных парах гомологичных хромосом. Естественно возникает вопрос: а как же будет происходить распределение разных (неаллельных) генов в ряде поколений, если они лежат в одной и той же паре хромосом? Уже чисто теоретически следует допустить, что такое явление должно иметь место, ибо число генов, которое удается установить путем гибридологического анализа, во много раз превосходит число хромосом. Очевидно, что к генам, находящимся в одной хромосоме, закон независимого распределения (второй закон Менделя) неприложим и закон этот должен быть ограничен лишь теми случаями, когда гены разных аллелей находятся в разных хромосомах.

Вопрос о закономерностях наследования при нахождении генов в одной хромосоме был тщательно изучен Т. Морганом и его школой. Основным объектом исследований служила небольшая плодовая мушка дрозофила. Это насекомое исключительно удобно для генетической работы. Мушка легко разводится в лабораторных условиях, плодовита, каждые 20—25 дней дает новое поколение, обладает многочисленными и разнообразными наследственными изменениями, имеет небольшое число хромосом (в диплоидном наборе — 8).

Многочисленные опыты показали, что гены, локализованные в одной хромосоме, оказываются сцепленными, т. р. наследуются преимущественно вместе, не обнаруживая независимого распределения по второму закону Менделя. Рассмотрим конкретный пример. Если скрестить дрозофилу с серым телом и нормальными крыльями с мушкой, обладающей темной окраской тела и укороченными крыльями, то в первом поколении гибридов все мушки будут серыми с нормальными крыльями. При скрещивании гибридов между собой во втором поколении не произойдет независимого распределения признаков по двум аллелям («серое тело — темное тело» и «нормальные крылья — укороченные крылья») по формуле (3:1) 2 .

Среди особей второго поколения гораздо чаще, чем это можно было бы ожидать при независимом распределении признаков, будут встречаться мушки с серым телом и нормальными крыльями и мушки с темным телом и недоразвитыми крыльями. Лишь у очень небольшого числа мушек произойдет перекомбинация родительских признаков и получатся мушки с серым телом и недоразвитыми крыльями и темные с нормальными крыльями. Мы видим на этом примере, что гены, обусловливающие признаки «серое тело — нормальные крылья» и «темное тело — недоразвитые крылья», наследуются преимущественно вместе, или, иначе говоря, оказываются сцепленными между собой. Это сцепление зависит от локализации генов в одной и той же хромосоме. Поэтому при мейозе эти гены не расходятся, не отделяются друг от друга, а наследуются вместе. Явление сцепления генов, локализованных в одной хромосоме, известно под названием закона Моргана.

Это интересно:  Решение суда наследование по закону 2019 год

Почему же все-таки среди гибридов второго поколения появляется небольшое число особей с перекомбинацией родительских признаков? Почему сцепление генов не является абсолютным? Исследования показали, что эта перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации гомологичных хромосом они в известном проценте случаев обмениваются своими участками, или, иначе говоря, между ними происходит перекрест. Ясно, что при этом гены, локализованные первоначально в одной хромосоме, окажутся в разных хромосомах, между ними произойдет перекомбинация. В настоящее время явление сцепления генов исследовано на многих объектах. Среди растений особенно полно изучены в этом отношении кукуруза, томаты, посевной горох.

3. Взаимодействие генов

Взаимодействие генов. Новообразования при скрещивании.

В рассмотренных выше примерах имело место относительно независимое проявление действия генов. Доминантный ген желтой окраски семян гороха вызывает развитие этого признака как в присутствии доминантного гена гладкой формы семян, так и при наличии аллельного ему рецессивного гена морщинистой формы семян. У морских свинок ген черной или белой окраски действует независимо от генов, определяющих характер развития шерстного покрова. На основании знакомства с этими примерами может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов. Такое представление ложно. Хотя в некоторых случаях действие генов, принадлежащих к разным аллелям, относительно независимо, но чаще между ними осуществляются разные формы взаимодействия.

Развитие того или иного признака организма обычно находится под контролем многих генов.

У разных пород кур имеются разнообразные формы гребня. Четыре типа формы гребня: гороховидный, розовидный, ореховидный и простой. При скрещивании между собой гомозиготных птиц с розовидным и простым гребнем признак розовидного гребня оказывается доминантным. Первое поколение гибридов будет иметь розовидный гребень, а в F2 произойдет расщепление в отношении 3: 1 (три розовидных, один простой).

Аналогичный результат получается при скрещивании птиц с гороховидным и простым гребнем. В F1 будет доминировать гороховидный гребень, а в F2 происходит расщепление в отношении 3 гороховидных, 1 простой. Ну, а как будут выглядеть гибриды, если скрестить между собой птиц с гороховидным и розовидным гребнем, т. е. с двумя разными, неаллельными доминантными признаками? Опыт показывает, что при этом все потомство в F1 будет иметь совершенно новую форму гребня — ореховидную. При скрещивании этих гибридов между собой расщепление в F2 пойдет по дигибридной схеме, а именно: 9 ореховидных, 3 розовидных,. 3 гороховидных, 1 простой. Если мы сопоставим этот результат с уже известным нам ходом дигибридного расщепления у горохов и морских свинок, то придем к заключению, что ореховидный гребень развивается в том случае, когда в зиготе присутствуют одновременно два доминантных гена. Следовательно, простой гребень — результат взаимодействия двух рецессивных генов. Обозначим аллель, доминантный ген которой вызывает развитие гороховидного гребня, латинскими буквами Р—р, а аллель роговидного гребня как R—г.

Множественное действие генов. На рассмотренных только что примерах было показано, что большинство наследственно обусловленных признаков организма находится под контролем не одного, а многих генов. Наряду с этим имеет место и другое явление. Во многих случаях ген оказывает свое действие не на один, а на ряд признаков организма. При этом особенно отчетливо выступает одна сторона действия гена, по которой его обычно и называют. Приведем примеры. У большинства растений с красными цветками (наследственный признак) в стеблях (особенно в междоузлиях) тоже имеется красный пигмент. У растений с белыми цветками стебли чисто зеленые. У растения водосбора ген, обусловливающий красную окраску цветка, имеет множественное действие. Он определяет фиолетовый оттенок листьев, удлинение стебля и больший вес семян. Множество аналогичных примеров можно привести и из животного мира. Ограничимся только одним. У излюбленного объекта генетических исследований — плодовой мушки дрозофилы, генотип которой изучен очень полно, ген, определяющий отсутствие пигмента в глазах, вместе с тем снижает плодовитость, влияет на окраску некоторых внутренних органов и уменьшает продолжительность жизни.

Накопившийся в настоящее время в генетике обширный материал по изучению наследственности у самых различных растений, животных, микроорганизмов говорит о том, что множественное действие гена — широко распространенное явление.

Приведенные факты и наблюдения, касающиеся взаимодействия генов и их множественного действия, позволяют нам значительно углубить общее представление о природе наследственной основы организмов — генотипе. Факт расщепления в потомстве гибридов позволяет утверждать, что генотип слагается из отдельных элементов, которые называются генами и могут отделяться друг от друга и наследоваться независимо (вспомним второй закон Менделя). Наряду с прерывистым характером генотип обладает целостностью и не может рассматриваться как простая механическая сумма отдельных генов. Эта целостность генотипа выражается, прежде всего, в том, что отдельные компоненты его (гены) находятся в тесном взаимодействии друг с другом. Развитие признаков организма определяется взаимодействием множества генов. С другой стороны, каждый ген обладает множественным действием, оказывая влияние на развитие не одного, а многих признаков организма. Генотип организма связан с определенными структурами клетки, с ее хромосомным аппаратом.

Сцепленное наследование

Под сцеплением генов генетики понимают совместное наследование генов, локализованых в одной хромосоме.

Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.

Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее.

Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

Это интересно:  Очереди наследования гк рф 2019 год

Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, — в другой. Явление совместного наследования признаков Морган назвал сцеплением. Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления. Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека — 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и ав, а отцовский — один тип — ав. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв. Для объяснения этого факта необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

В зависимости от особенностей образования гамет, различают:

  • некроссоверные гаметы — гаметы с хромосомами, образованными без кроссинговера;
  • кроссоверные гаметы — гаметы с хромосомами, претерпевшими кросинговер.

Соответственно этому различают:

  • рекомбинантные (кроссоверные) особи — особи, возникшие с участием кроссоверных гамет;
  • нерекомбинантные (некроссоверные) особи — особи, возникшие без участия кроссоверных гамет.

Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

  • 1) гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;
  • 2) каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  • 3) гены расположены в хромосомах в определенной линейной последовательности;
  • 4) гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  • 5) сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:
    • — является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);
    • -зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);
  • 6) каждый вид имеет характерный только для него набор хромосом.

Наследование признаков, сцепленных с полом. Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма — они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление — 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации. Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных.

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз — повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом — только от отца к сыну.

Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом. Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак)

Это интересно:  Раздел квартиры при наследовании 2019 год

Явление сцепленного наследования

Исходя из принципов генетического анализа, с очевидностью вытекает, что независимое комбинирование генов может осуществляться лишь при условии, что гены находятся в разных парах хромосом.

Следовательно, у каждого организма число генов, независимо комбинирующихся в мейозе, ограничено числом пар хромосом. Но, с другой стороны, совершенно очевидно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом, характерное для каждого вида, относительно мало и постоянно.

Если предположить, что в каждой хромосоме не один ген, а два, три и более, то тогда следует признать, что третий менделевский закон касается распределения хромосом, а не генов. В этом смысле действие третьего менделевского закона ограничено.

Рассматривая дигибридное скрещивание, мы записывали генотипы родительских организмов следующим образом: ААВВ х aabb либо AAbb х ааВВ. Когда аллели генов А и В находятся в разных хромосомах, то развернутая формула этих генотипов может быть записана так:

Гены вместе с их носителями — хромосомами закономерно распределяются в мейозе при образовании гамет, в силу чего они свободно и независимо по закону случайности комбинируются и обусловливают расщепление в F2 по Фенотипу в отношении 9 : 3 : 3 : 1.

Теперь представим себе, что две аллельные пары генов Аа и Вb находятся не в двух разных хромосомах, а в одной гомологичной паре хромосом; при написании генотипа мы это обозначим следующим образом: AB/ab.

При этом допустим, что данные гены не могут меняться местами. Тогда при скрещивании двух организмов, различающихся по двум парам признаков, например AB/AB x ab/ab, получим гибрид F1 с генотипом AB/ab.

Далее, скрещивая гибриды первого поколения внутри себя: AB/ab x AB/ab, получим расщепление в F2 по генотипу: 1AB/AB : 2AB/ab : 1ab/ab.

Как видно, при полном доминировании по обеим парам генов расщепление по фенотипу будет 3 : 1, а не 9:3:3:1. Если гибридное растение F1 скрещивается по типу анализирующего скрещивания: AB/ab x ab/ab, то в потомстве FB получается расщепление в отношении 2AB/ab x 2ab/ab т. е. 1 : 1, а не 1 : 1 : 1 : 1. Таким образом, вместо четырех фенотипических классов, которые появились бы в случае свободной и независимого комбинирования, получаются два.

Из рассмотренного примера следует, что гены, находящиеся в одной паре гомологичных хромосом, наследуются вместе и не расходятся в потомстве, так как при гаметогенезе они обязательно попадают в одну гамету; их потомки F2 и FB будут иметь признаки в той же комбинации, что и у родительских форм.

Если в одной паре гомологичных хромосом имеется более двух генов, например пять, и в каждой аллельной паре один ее член является доминантным, а другой — рецессивным, то формулу гетерозиготного состояния по этим генам можно написать следующим образом: ABCDE/abcde. Гены, расположенные в одной паре гомологичных хромосом и наследующиеся целой группой, образуют группу сцепления. Совместное наследование генов, ограничивающее свободное их комбинирование, называют сцеплением генов.

Явление сцепления было обнаружено в 1906 и В. Бэтсоном и Р. Пеннетом в опытах с душистым горошком. Скрещивая две расы душистого горошка, различающиеся по двум парам признаков — по форме пыльцы и по окраске цветка, Бэтсон и Пеннет не обнаружили в F2 ожидаемого расщепления в отношении 9:3:3:1. Признаки не дали независимого наследования, они как бы «стремились» остаться в исходных, родительских комбинациях, а гены их — попасть в одну гамету. Авторы обозначили это явление как притяжение.

Понимание существа этого явления стало возможным лишь в результате работ Т. Моргана и его сотрудников А. Стертеванта, Г. Мёллера, К. Бриджеса и др. Т. Моргану принадлежит и сам термин «сцепление генов» в хромосоме и объяснение этого явления. Морган установил, что материальной основой сцепления является хромосома. Хромосома представляет собой отдельную материальную и функциональную единицу при редукционном делении клетки. И, следовательно, все гены, находящиеся в одной хромосоме, будут связаны между собой субстратом хромосомы, ее организацией и поведением в мейозе. Сцепление может быть обнаружено в любой из хромосом, несущей гены.

Для наследования сцепленных генов, находящихся в половых хромосомах, имеет значение направление скрещивания. Для наследования сцепленных генов в аутосомах направление скрещивания, как правило, не имеет значения.

Как же генетическими методами отличить явление сцепленного наследования от несцепленного, свободного комбинирования генов? Для выяснения вопроса сначала удобнее иметь дело с крайним проявлением закономерности.

Напомним, что если два гена полностью сцеплены, то дигибрид AB/ab будет давать только два сорта гамет (АВ и ab) поровну, тогда как при независимом наследовании дигетерозигота образует четыре типа гамет в равных количествах: АВ, Ab, аВ, ab. Наиболее четко эта разница в поведении полностью сцепленных и независимо наследующихся генов выявляется в анализирующем скрещивании. Расщепление в анализирующем скрещивании и служит показателем того, сцеплены ли гены или они наследуются независимо.

Нужно иметь в виду, что, кроме истинного сцепления, могут у встречаться явления, внешне сходные со сцеплением, но отличные от него по своей природе: это так называемое ложное, межхромосомное сцепление, возникающее из-за нарушения свободного комбинирования негомологичных хромосом в мейозе. Такие случаи наблюдались в скрещиваниях линий лабораторных мышей и дрожжей. Предполагается, что такое сцепление между генами разных хромосом обязано тенденции последних к неслучайному расхождению в мейозе. Сцепленное наследование генов негомологичных хромосом обнаруживается также при межвидовых скрещиваниях в тех случаях, когда родительская комбинация хромосом оказывается физиологически совместимой. То же самое может иметь место в отношении целой группы негомологичных хромосом, когда они всей группой попадают предпочтительно в одну из клеток.

Таким образом, любое из явлений, ограничивающее свободное, независимое распределение хромосом в мейозе, будет создавать картину сцепления генов в наследовании. Однако ложное сцепление следует отличать от истинного сцепления генов, находящихся в одной хромосоме — в одной группе сцепления. В дальнейшем мы узнаем, что группа сцепления не есть неизменная единица, она эволюционирует и экспериментально изменяема.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Статья написана по материалам сайтов: www.kazedu.kz, studwood.ru, www.activestudy.info.

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий

Adblock detector